File size: 7,801 Bytes
41c03cf
 
c3429f6
462fddf
c3429f6
462fddf
 
ba9faee
7e29aa0
c3429f6
7e29aa0
 
c3429f6
7e29aa0
 
 
462fddf
7e29aa0
 
 
 
 
c3429f6
 
7e29aa0
462fddf
 
42d2b87
462fddf
 
 
 
7e29aa0
 
42d2b87
 
 
 
a653421
7e29aa0
 
 
 
 
462fddf
7e29aa0
 
462fddf
 
7e29aa0
462fddf
 
7e29aa0
 
462fddf
7e29aa0
462fddf
7e29aa0
462fddf
7e29aa0
 
 
42d2b87
c3429f6
7e29aa0
462fddf
 
 
 
 
c3429f6
462fddf
7e29aa0
462fddf
 
 
 
 
c3429f6
462fddf
 
 
 
 
 
 
7e29aa0
 
462fddf
 
7e29aa0
462fddf
 
 
 
 
 
7e29aa0
 
462fddf
 
 
 
 
 
 
 
 
 
 
7e29aa0
462fddf
 
 
7e29aa0
462fddf
 
13e82ee
462fddf
 
13e82ee
462fddf
7e29aa0
462fddf
 
7e29aa0
462fddf
 
 
 
7e29aa0
462fddf
 
7e29aa0
a653421
689fb64
7e29aa0
 
462fddf
 
7e29aa0
462fddf
 
 
 
 
 
7e29aa0
 
462fddf
61be320
 
462fddf
 
 
 
 
7e29aa0
462fddf
 
7e29aa0
462fddf
a295d73
c3429f6
462fddf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import cv2
import numpy as np
import torch
from ultralytics import YOLO
import gradio as gr
from scipy.interpolate import interp1d
import uuid
import os
import time

# Load the trained YOLOv8n model
model = YOLO("best.pt")

# Constants
STUMPS_WIDTH = 0.2286  # meters
BALL_DIAMETER = 0.073  # meters
FRAME_RATE = 30  # Input video frame rate
SLOW_MOTION_FACTOR = 3  # Reduced from 6 for faster processing
CONF_THRESHOLD = 0.3
MAX_DETECTIONS = 10  # Stop after detecting enough ball positions
PROCESS_EVERY_N_FRAME = 2  # Process every 2nd frame
RESIZE_FACTOR = 0.5  # Downscale frames to 50% for faster processing

def process_video(video_path):
    start_time = time.time()
    if not os.path.exists(video_path):
        return [], [], "Error: Video file not found"
    cap = cv2.VideoCapture(video_path)
    frames = []
    ball_positions = []
    debug_log = []
    frame_count = 0
    processed_frames = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        if frame_count % PROCESS_EVERY_N_FRAME != 0:
            continue  # Skip frames
        processed_frames += 1
        # Resize frame for faster processing
        frame_small = cv2.resize(frame, (0, 0), fx=RESIZE_FACTOR, fy=RESIZE_FACTOR)
        frames.append(frame.copy())  # Store original frame
        # Detect ball
        results = model.predict(frame_small, conf=CONF_THRESHOLD)
        detections = 0
        for detection in results[0].boxes:
            if detection.cls == 0:  # Ball class
                detections += 1
                x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
                # Scale coordinates back to original frame size
                x1, y1, x2, y2 = [v / RESIZE_FACTOR for v in [x1, y1, x2, y2]]
                ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
                # Draw bounding box on original frame
                cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
        frames[-1] = frame
        debug_log.append(f"Frame {frame_count}: {detections} ball detections")
        if len(ball_positions) >= MAX_DETECTIONS:
            debug_log.append(f"Stopping early after {len(ball_positions)} detections")
            break
    cap.release()

    debug_log.append(f"Processed {processed_frames} frames in {time.time() - start_time:.2f} seconds")
    if not ball_positions:
        debug_log.append("No balls detected in any frame")
    else:
        debug_log.append(f"Total ball detections: {len(ball_positions)}")
    return frames, ball_positions, "\n".join(debug_log)

def estimate_trajectory(ball_positions, frames):
    start_time = time.time()
    if len(ball_positions) < 2:
        return None, None, "Error: Fewer than 2 ball detections for trajectory"
    x_coords = [pos[0] for pos in ball_positions]
    y_coords = [pos[1] for pos in ball_positions]
    times = np.arange(len(ball_positions)) / FRAME_RATE
    try:
        fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
        fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
    except Exception as e:
        return None, None, f"Error in trajectory interpolation: {str(e)}"
    t_future = np.linspace(times[-1], times[-1] + 0.5, 10)
    x_future = fx(t_future)
    y_future = fy(t_future)
    debug_log = f"Trajectory estimated in {time.time() - start_time:.2f} seconds"
    return list(zip(x_future, y_future)), t_future, debug_log

def lbw_decision(ball_positions, trajectory, frames):
    start_time = time.time()
    if not frames:
        return "Error: No frames processed", None, None, None
    if not trajectory or len(ball_positions) < 2:
        return "Not enough data (insufficient ball detections)", None, None, None
    frame_height, frame_width = frames[0].shape[:2]
    stumps_x = frame_width / 2
    stumps_y = frame_height * 0.9
    stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
    pitch_point = ball_positions[0]
    impact_point = ball_positions[-1]
    pitch_x, pitch_y = pitch_point
    if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
        return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
    impact_x, impact_y = impact_point
    if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
        return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
    for x, y in trajectory:
        if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
            return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
    debug_log = f"LBW decision computed in {time.time() - start_time:.2f} seconds"
    return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point

def generate_slow_motion(frames, trajectory, pitch_point, impact_point, output_path):
    start_time = time.time()
    if not frames:
        return None
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
    for frame in frames:
        if trajectory:
            for x, y in trajectory:
                cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1)
        if pitch_point:
            x, y = pitch_point
            cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
            cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
        if impact_point:
            x, y = impact_point
            cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
            cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
        for _ in range(SLOW_MOTION_FACTOR):
            out.write(frame)
    out.release()
    debug_log = f"Slow-motion video generated in {time.time() - start_time:.2f} seconds"
    return output_path, debug_log

def drs_review(video):
    start_time = time.time()
    frames, ball_positions, debug_log = process_video(video)
    if not frames:
        return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
    trajectory, _, trajectory_log = estimate_trajectory(ball_positions, frames)
    decision, trajectory, pitch_point, impact_point = lbw_decision(ball_positions, trajectory, frames)
    output_path = f"output_{uuid.uuid4()}.mp4"
    slow_motion_path, slow_motion_log = generate_slow_motion(frames, trajectory, pitch_point, impact_point, output_path)
    debug_output = f"{debug_log}\n{trajectory_log}\n{slow_motion_log}\nTotal processing time: {time.time() - start_time:.2f} seconds"
    return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path

# Gradio interface
iface = gr.Interface(
    fn=drs_review,
    inputs=gr.Video(label="Upload Video Clip"),
    outputs=[
        gr.Textbox(label="DRS Decision and Debug Log"),
        gr.Video(label="Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue), Pitch Point (Red), Impact Point (Yellow)")
    ],
    title="AI-Powered DRS for LBW in Local Cricket",
    description="Upload a 3-second video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue dots), pitch point (red circle), and impact point (yellow circle)."
)

if __name__ == "__main__":
    iface.launch()