File size: 11,565 Bytes
41c03cf
 
689fb64
 
 
c3429f6
 
ba9faee
689fb64
 
 
c3429f6
689fb64
 
c3429f6
689fb64
 
 
c3429f6
689fb64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9ae2d
689fb64
 
 
c3429f6
42d2b87
689fb64
 
 
 
 
 
 
 
 
a653421
689fb64
 
42d2b87
689fb64
42d2b87
 
 
689fb64
 
 
 
 
 
 
 
 
 
a653421
689fb64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d2b87
689fb64
 
c3429f6
689fb64
 
 
a653421
689fb64
 
 
 
c3429f6
689fb64
 
 
c3429f6
689fb64
c3429f6
689fb64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e82ee
689fb64
 
 
 
13e82ee
689fb64
 
 
 
 
 
 
 
 
 
 
 
 
13e82ee
689fb64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a653421
6e725f6
689fb64
 
 
 
c3429f6
689fb64
 
c3429f6
689fb64
61be320
 
689fb64
 
 
 
 
 
 
 
 
a295d73
c3429f6
689fb64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import cv2
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import torch
import gradio as gr
import os
import time
from scipy.optimize import curve_fit
import sys

# Add yolov5 directory to sys.path
sys.path.append(os.path.join(os.path.dirname(__file__), "yolov5"))

# Import YOLOv5 modules
from models.experimental import attempt_load
from utils.general import non_max_suppression, xywh2xyxy

# Cricket pitch dimensions (in meters)
PITCH_LENGTH = 20.12  # Length of cricket pitch (stumps to stumps)
PITCH_WIDTH = 3.05    # Width of pitch
STUMP_HEIGHT = 0.71   # Stump height
STUMP_WIDTH = 0.2286  # Stump width (including bails)

# Model input size (adjust if yolov5s.pt was trained with a different size)
MODEL_INPUT_SIZE = (640, 640)  # (height, width)
FRAME_SKIP = 2  # Process every 2nd frame
MIN_DETECTIONS = 10  # Stop after 10 detections
BATCH_SIZE = 4  # Process 4 frames at a time
SLOW_MOTION_FACTOR = 3  # Duplicate each frame 3 times for slow motion

# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = attempt_load("yolov5s.pt")  # Load yolov5s.pt
model.to(device).eval()  # Move model to device and set to evaluation mode

# Function to process video and detect ball
def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    frame_rate = cap.get(cv2.CAP_PROP_FPS)
    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    positions = []
    frame_numbers = []
    bounce_frame = None
    bounce_point = None
    batch_frames = []
    batch_frame_nums = []
    frame_count = 0

    start_time = time.time()
    while cap.isOpened():
        frame_num = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
        ret, frame = cap.read()
        if not ret:
            break

        # Skip frames
        if frame_count % FRAME_SKIP != 0:
            frame_count += 1
            continue

        # Resize frame to model input size
        frame = cv2.resize(frame, MODEL_INPUT_SIZE, interpolation=cv2.INTER_AREA)
        batch_frames.append(frame)
        batch_frame_nums.append(frame_num)
        frame_count += 1

        # Process batch when full or at end
        if len(batch_frames) == BATCH_SIZE or not ret:
            # Preprocess batch
            batch = [cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in batch_frames]
            batch = np.stack(batch)  # [batch_size, H, W, 3]
            batch = torch.from_numpy(batch).to(device).float() / 255.0
            batch = batch.permute(0, 3, 1, 2)  # [batch_size, 3, H, W]

            # Run inference
            frame_start_time = time.time()
            with torch.no_grad():
                pred = model(batch)[0]
            pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
            print(f"Batch inference time: {time.time() - frame_start_time:.2f}s for {len(batch_frames)} frames")

            # Process detections
            for i, det in enumerate(pred):
                if det is not None and len(det):
                    det = xywh2xyxy(det)  # Convert to [x1, y1, x2, y2]
                    for *xyxy, conf, cls in det:
                        x_center = (xyxy[0] + xyxy[2]) / 2
                        y_center = (xyxy[1] + xyxy[3]) / 2
                        # Scale coordinates back to original frame size
                        x_center = x_center * frame_width / MODEL_INPUT_SIZE[1]
                        y_center = y_center * frame_height / MODEL_INPUT_SIZE[0]
                        positions.append((x_center.item(), y_center.item()))
                        frame_numbers.append(batch_frame_nums[i])

                        # Detect bounce (lowest y_center point)
                        if bounce_frame is None or y_center > positions[bounce_frame][1]:
                            bounce_frame = len(frame_numbers) - 1
                            bounce_point = (x_center.item(), y_center.item())

            batch_frames = []
            batch_frame_nums = []

            # Early termination
            if len(positions) >= MIN_DETECTIONS:
                break

    cap.release()
    print(f"Total video processing time: {time.time() - start_time:.2f}s")
    return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height

# Polynomial function for trajectory fitting
def poly_func(x, a, b, c):
    return a * x**2 + b * x + c

# Predict trajectory and wicket inline path
def predict_trajectory(positions, frame_numbers, frame_width, frame_height):
    if len(positions) < 3:
        return None, None, "Insufficient detections for trajectory prediction"

    x_coords = [p[0] for p in positions]
    y_coords = [p[1] for p in positions]
    frames = np.array(frame_numbers)

    # Fit polynomial to x and y coordinates
    try:
        popt_x, _ = curve_fit(poly_func, frames, x_coords)
        popt_y, _ = curve_fit(poly_func, frames, y_coords)
    except:
        return None, None, "Failed to fit trajectory"

    # Extrapolate to stumps
    frame_max = max(frames) + 10
    future_frames = np.linspace(min(frames), frame_max, 100)
    x_pred = poly_func(future_frames, *popt_x)
    y_pred = poly_func(future_frames, *popt_y)

    # Wicket inline path (center line toward stumps)
    stump_x = frame_width / 2
    stump_y = frame_height
    inline_x = np.linspace(min(x_coords), stump_x, 100)
    inline_y = np.interp(inline_x, x_pred, y_pred)

    # Check if trajectory hits stumps
    stump_hit = False
    for x, y in zip(x_pred, y_pred):
        if abs(y - stump_y) < 50 and abs(x - stump_x) < STUMP_WIDTH * frame_width / PITCH_WIDTH:
            stump_hit = True
            break

    lbw_decision = "OUT" if stump_hit else "NOT OUT"
    return list(zip(future_frames, x_pred, y_pred)), list(zip(inline_x, inline_y)), lbw_decision

# Map pitch location
def map_pitch(bounce_point, frame_width, frame_height):
    if bounce_point is None:
        return None, "No bounce detected"

    x, y = bounce_point
    pitch_x = (x / frame_width) * PITCH_WIDTH - PITCH_WIDTH / 2
    pitch_y = (1 - y / frame_height) * PITCH_LENGTH
    return pitch_x, pitch_y

# Estimate ball speed
def estimate_speed(positions, frame_numbers, frame_rate, frame_width):
    if len(positions) < 2:
        return None, "Insufficient detections for speed estimation"

    distances = []
    for i in range(1, len(positions)):
        x1, y1 = positions[i-1]
        x2, y2 = positions[i]
        pixel_dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
        distances.append(pixel_dist)

    pixel_to_meter = PITCH_LENGTH / frame_width
    distances_m = [d * pixel_to_meter for d in distances]
    time_interval = 1 / frame_rate
    speeds = [d / time_interval for d in distances_m]
    avg_speed_kmh = np.mean(speeds) * 3.6
    return avg_speed_kmh, "Speed calculated successfully"

# Main Gradio function with video overlay and slow motion
def drs_analysis(video):
    # Video is a file path (string) in Hugging Face Spaces
    video_path = video if isinstance(video, str) else "temp_video.mp4"
    if not isinstance(video, str):
        with open(video_path, "wb") as f:
            f.write(video.read())

    # Process video for detections
    positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height = process_video(video_path)
    if not positions:
        return None, None, "No ball detected in video", None

    # Predict trajectory and wicket path
    trajectory, inline_path, lbw_decision = predict_trajectory(positions, frame_numbers, frame_width, frame_height)
    if trajectory is None:
        return None, None, lbw_decision, None

    pitch_x, pitch_y = map_pitch(bounce_point, frame_width, frame_height)
    speed_kmh, speed_status = estimate_speed(positions, frame_numbers, frame_rate, frame_width)

    # Create output video with overlays and slow motion
    output_path = "output_video.mp4"
    cap = cv2.VideoCapture(video_path)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, frame_rate, (frame_width, frame_height))

    frame_count = 0
    positions_dict = dict(zip(frame_numbers, positions))

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        # Skip frames for consistency with detection
        if frame_count % FRAME_SKIP != 0:
            frame_count += 1
            continue

        # Overlay ball trajectory (red) and wicket inline path (blue)
        if frame_count in positions_dict:
            cv2.circle(frame, (int(positions_dict[frame_count][0]), int(positions_dict[frame_count][1])), 5, (0, 0, 255), -1)  # Red dot
        if trajectory:
            traj_x = [int(t[1]) for t in trajectory if t[0] >= frame_count]
            traj_y = [int(t[2]) for t in trajectory if t[0] >= frame_count]
            if traj_x and traj_y:
                for i in range(1, len(traj_x)):
                    cv2.line(frame, (traj_x[i-1], traj_y[i-1]), (traj_x[i], traj_y[i]), (0, 0, 255), 2)  # Red line
        if inline_path:
            inline_x = [int(x) for x, _ in inline_path]
            inline_y = [int(y) for _, y in inline_path]
            if inline_x and inline_y:
                for i in range(1, len(inline_x)):
                    cv2.line(frame, (inline_x[i-1], inline_y[i-1]), (inline_x[i], inline_y[i]), (255, 0, 0), 2)  # Blue line

        # Overlay pitch map in top-right corner
        if pitch_x is not None and pitch_y is not None:
            map_width = 200
            # Cap map_height to 25% of frame height to ensure it fits
            map_height = min(int(map_width * PITCH_LENGTH / PITCH_WIDTH), frame_height // 4)
            pitch_map = np.zeros((map_height, map_width, 3), dtype=np.uint8)
            pitch_map[:] = (0, 255, 0)  # Green pitch
            cv2.rectangle(pitch_map, (0, map_height-10), (map_width, map_height), (0, 51, 51), -1)  # Brown stumps
            bounce_x = int((pitch_x + PITCH_WIDTH/2) / PITCH_WIDTH * map_width)
            bounce_y = int((1 - pitch_y / PITCH_LENGTH) * map_height)
            cv2.circle(pitch_map, (bounce_x, bounce_y), 5, (0, 0, 255), -1)  # Red bounce point
            # Ensure overlay fits within frame
            overlay_region = frame[0:map_height, frame_width-map_width:frame_width]
            if overlay_region.shape[0] >= map_height and overlay_region.shape[1] >= map_width:
                frame[0:map_height, frame_width-map_width:frame_width] = cv2.resize(pitch_map, (map_width, map_height))

        # Add text annotations
        text = f"LBW: {lbw_decision}\nSpeed: {speed_kmh:.2f} km/h"
        cv2.putText(frame, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)

        # Write frame multiple times for slow motion
        for _ in range(SLOW_MOTION_FACTOR):
            out.write(frame)

        frame_count += 1

    cap.release()
    out.release()

    if not isinstance(video, str):
        os.remove(video_path)

    return None, None, None, output_path

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Cricket DRS Analysis")
    video_input = gr.Video(label="Upload Video Clip")
    btn = gr.Button("Analyze")
    trajectory_output = gr.Plot(label="Ball Trajectory")
    pitch_output = gr.Plot(label="Pitch Map")
    text_output = gr.Textbox(label="Analysis Results")
    video_output = gr.Video(label="Processed Video")
    btn.click(drs_analysis, inputs=video_input, outputs=[trajectory_output, pitch_output, text_output, video_output])

if __name__ == "__main__":
    demo.launch()