File size: 11,565 Bytes
41c03cf 689fb64 c3429f6 ba9faee 689fb64 c3429f6 689fb64 c3429f6 689fb64 c3429f6 689fb64 1a9ae2d 689fb64 c3429f6 42d2b87 689fb64 a653421 689fb64 42d2b87 689fb64 42d2b87 689fb64 a653421 689fb64 42d2b87 689fb64 c3429f6 689fb64 a653421 689fb64 c3429f6 689fb64 c3429f6 689fb64 c3429f6 689fb64 13e82ee 689fb64 13e82ee 689fb64 13e82ee 689fb64 a653421 6e725f6 689fb64 c3429f6 689fb64 c3429f6 689fb64 61be320 689fb64 a295d73 c3429f6 689fb64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import cv2
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import torch
import gradio as gr
import os
import time
from scipy.optimize import curve_fit
import sys
# Add yolov5 directory to sys.path
sys.path.append(os.path.join(os.path.dirname(__file__), "yolov5"))
# Import YOLOv5 modules
from models.experimental import attempt_load
from utils.general import non_max_suppression, xywh2xyxy
# Cricket pitch dimensions (in meters)
PITCH_LENGTH = 20.12 # Length of cricket pitch (stumps to stumps)
PITCH_WIDTH = 3.05 # Width of pitch
STUMP_HEIGHT = 0.71 # Stump height
STUMP_WIDTH = 0.2286 # Stump width (including bails)
# Model input size (adjust if yolov5s.pt was trained with a different size)
MODEL_INPUT_SIZE = (640, 640) # (height, width)
FRAME_SKIP = 2 # Process every 2nd frame
MIN_DETECTIONS = 10 # Stop after 10 detections
BATCH_SIZE = 4 # Process 4 frames at a time
SLOW_MOTION_FACTOR = 3 # Duplicate each frame 3 times for slow motion
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = attempt_load("yolov5s.pt") # Load yolov5s.pt
model.to(device).eval() # Move model to device and set to evaluation mode
# Function to process video and detect ball
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
positions = []
frame_numbers = []
bounce_frame = None
bounce_point = None
batch_frames = []
batch_frame_nums = []
frame_count = 0
start_time = time.time()
while cap.isOpened():
frame_num = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
ret, frame = cap.read()
if not ret:
break
# Skip frames
if frame_count % FRAME_SKIP != 0:
frame_count += 1
continue
# Resize frame to model input size
frame = cv2.resize(frame, MODEL_INPUT_SIZE, interpolation=cv2.INTER_AREA)
batch_frames.append(frame)
batch_frame_nums.append(frame_num)
frame_count += 1
# Process batch when full or at end
if len(batch_frames) == BATCH_SIZE or not ret:
# Preprocess batch
batch = [cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in batch_frames]
batch = np.stack(batch) # [batch_size, H, W, 3]
batch = torch.from_numpy(batch).to(device).float() / 255.0
batch = batch.permute(0, 3, 1, 2) # [batch_size, 3, H, W]
# Run inference
frame_start_time = time.time()
with torch.no_grad():
pred = model(batch)[0]
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
print(f"Batch inference time: {time.time() - frame_start_time:.2f}s for {len(batch_frames)} frames")
# Process detections
for i, det in enumerate(pred):
if det is not None and len(det):
det = xywh2xyxy(det) # Convert to [x1, y1, x2, y2]
for *xyxy, conf, cls in det:
x_center = (xyxy[0] + xyxy[2]) / 2
y_center = (xyxy[1] + xyxy[3]) / 2
# Scale coordinates back to original frame size
x_center = x_center * frame_width / MODEL_INPUT_SIZE[1]
y_center = y_center * frame_height / MODEL_INPUT_SIZE[0]
positions.append((x_center.item(), y_center.item()))
frame_numbers.append(batch_frame_nums[i])
# Detect bounce (lowest y_center point)
if bounce_frame is None or y_center > positions[bounce_frame][1]:
bounce_frame = len(frame_numbers) - 1
bounce_point = (x_center.item(), y_center.item())
batch_frames = []
batch_frame_nums = []
# Early termination
if len(positions) >= MIN_DETECTIONS:
break
cap.release()
print(f"Total video processing time: {time.time() - start_time:.2f}s")
return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height
# Polynomial function for trajectory fitting
def poly_func(x, a, b, c):
return a * x**2 + b * x + c
# Predict trajectory and wicket inline path
def predict_trajectory(positions, frame_numbers, frame_width, frame_height):
if len(positions) < 3:
return None, None, "Insufficient detections for trajectory prediction"
x_coords = [p[0] for p in positions]
y_coords = [p[1] for p in positions]
frames = np.array(frame_numbers)
# Fit polynomial to x and y coordinates
try:
popt_x, _ = curve_fit(poly_func, frames, x_coords)
popt_y, _ = curve_fit(poly_func, frames, y_coords)
except:
return None, None, "Failed to fit trajectory"
# Extrapolate to stumps
frame_max = max(frames) + 10
future_frames = np.linspace(min(frames), frame_max, 100)
x_pred = poly_func(future_frames, *popt_x)
y_pred = poly_func(future_frames, *popt_y)
# Wicket inline path (center line toward stumps)
stump_x = frame_width / 2
stump_y = frame_height
inline_x = np.linspace(min(x_coords), stump_x, 100)
inline_y = np.interp(inline_x, x_pred, y_pred)
# Check if trajectory hits stumps
stump_hit = False
for x, y in zip(x_pred, y_pred):
if abs(y - stump_y) < 50 and abs(x - stump_x) < STUMP_WIDTH * frame_width / PITCH_WIDTH:
stump_hit = True
break
lbw_decision = "OUT" if stump_hit else "NOT OUT"
return list(zip(future_frames, x_pred, y_pred)), list(zip(inline_x, inline_y)), lbw_decision
# Map pitch location
def map_pitch(bounce_point, frame_width, frame_height):
if bounce_point is None:
return None, "No bounce detected"
x, y = bounce_point
pitch_x = (x / frame_width) * PITCH_WIDTH - PITCH_WIDTH / 2
pitch_y = (1 - y / frame_height) * PITCH_LENGTH
return pitch_x, pitch_y
# Estimate ball speed
def estimate_speed(positions, frame_numbers, frame_rate, frame_width):
if len(positions) < 2:
return None, "Insufficient detections for speed estimation"
distances = []
for i in range(1, len(positions)):
x1, y1 = positions[i-1]
x2, y2 = positions[i]
pixel_dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
distances.append(pixel_dist)
pixel_to_meter = PITCH_LENGTH / frame_width
distances_m = [d * pixel_to_meter for d in distances]
time_interval = 1 / frame_rate
speeds = [d / time_interval for d in distances_m]
avg_speed_kmh = np.mean(speeds) * 3.6
return avg_speed_kmh, "Speed calculated successfully"
# Main Gradio function with video overlay and slow motion
def drs_analysis(video):
# Video is a file path (string) in Hugging Face Spaces
video_path = video if isinstance(video, str) else "temp_video.mp4"
if not isinstance(video, str):
with open(video_path, "wb") as f:
f.write(video.read())
# Process video for detections
positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height = process_video(video_path)
if not positions:
return None, None, "No ball detected in video", None
# Predict trajectory and wicket path
trajectory, inline_path, lbw_decision = predict_trajectory(positions, frame_numbers, frame_width, frame_height)
if trajectory is None:
return None, None, lbw_decision, None
pitch_x, pitch_y = map_pitch(bounce_point, frame_width, frame_height)
speed_kmh, speed_status = estimate_speed(positions, frame_numbers, frame_rate, frame_width)
# Create output video with overlays and slow motion
output_path = "output_video.mp4"
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, frame_rate, (frame_width, frame_height))
frame_count = 0
positions_dict = dict(zip(frame_numbers, positions))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Skip frames for consistency with detection
if frame_count % FRAME_SKIP != 0:
frame_count += 1
continue
# Overlay ball trajectory (red) and wicket inline path (blue)
if frame_count in positions_dict:
cv2.circle(frame, (int(positions_dict[frame_count][0]), int(positions_dict[frame_count][1])), 5, (0, 0, 255), -1) # Red dot
if trajectory:
traj_x = [int(t[1]) for t in trajectory if t[0] >= frame_count]
traj_y = [int(t[2]) for t in trajectory if t[0] >= frame_count]
if traj_x and traj_y:
for i in range(1, len(traj_x)):
cv2.line(frame, (traj_x[i-1], traj_y[i-1]), (traj_x[i], traj_y[i]), (0, 0, 255), 2) # Red line
if inline_path:
inline_x = [int(x) for x, _ in inline_path]
inline_y = [int(y) for _, y in inline_path]
if inline_x and inline_y:
for i in range(1, len(inline_x)):
cv2.line(frame, (inline_x[i-1], inline_y[i-1]), (inline_x[i], inline_y[i]), (255, 0, 0), 2) # Blue line
# Overlay pitch map in top-right corner
if pitch_x is not None and pitch_y is not None:
map_width = 200
# Cap map_height to 25% of frame height to ensure it fits
map_height = min(int(map_width * PITCH_LENGTH / PITCH_WIDTH), frame_height // 4)
pitch_map = np.zeros((map_height, map_width, 3), dtype=np.uint8)
pitch_map[:] = (0, 255, 0) # Green pitch
cv2.rectangle(pitch_map, (0, map_height-10), (map_width, map_height), (0, 51, 51), -1) # Brown stumps
bounce_x = int((pitch_x + PITCH_WIDTH/2) / PITCH_WIDTH * map_width)
bounce_y = int((1 - pitch_y / PITCH_LENGTH) * map_height)
cv2.circle(pitch_map, (bounce_x, bounce_y), 5, (0, 0, 255), -1) # Red bounce point
# Ensure overlay fits within frame
overlay_region = frame[0:map_height, frame_width-map_width:frame_width]
if overlay_region.shape[0] >= map_height and overlay_region.shape[1] >= map_width:
frame[0:map_height, frame_width-map_width:frame_width] = cv2.resize(pitch_map, (map_width, map_height))
# Add text annotations
text = f"LBW: {lbw_decision}\nSpeed: {speed_kmh:.2f} km/h"
cv2.putText(frame, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
# Write frame multiple times for slow motion
for _ in range(SLOW_MOTION_FACTOR):
out.write(frame)
frame_count += 1
cap.release()
out.release()
if not isinstance(video, str):
os.remove(video_path)
return None, None, None, output_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Cricket DRS Analysis")
video_input = gr.Video(label="Upload Video Clip")
btn = gr.Button("Analyze")
trajectory_output = gr.Plot(label="Ball Trajectory")
pitch_output = gr.Plot(label="Pitch Map")
text_output = gr.Textbox(label="Analysis Results")
video_output = gr.Video(label="Processed Video")
btn.click(drs_analysis, inputs=video_input, outputs=[trajectory_output, pitch_output, text_output, video_output])
if __name__ == "__main__":
demo.launch() |