DRS_AI / app.py
AjaykumarPilla's picture
Update app.py
6110fb8 verified
raw
history blame
7.33 kB
import cv2
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import torch
import gradio as gr
import os
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
# Load YOLOv5 model from yolov5 repository
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression, xywh2xyxy
# Cricket pitch dimensions (in meters)
PITCH_LENGTH = 20.12 # Length of cricket pitch (stumps to stumps)
PITCH_WIDTH = 3.05 # Width of pitch
STUMP_HEIGHT = 0.71 # Stump height
STUMP_WIDTH = 0.2286 # Stump width (including bails)
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = attempt_load("best.pt", map_location=device)
model.eval()
# Function to process video and detect ball
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
positions = []
frame_numbers = []
bounce_frame = None
bounce_point = None
while cap.isOpened():
frame_num = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
ret, frame = cap.read()
if not ret:
break
# Preprocess frame for YOLOv5
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img).to(device).float() / 255.0
img = img.permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
# Run inference
with torch.no_grad():
pred = model(img)[0]
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
# Process detections
for det in pred:
if det is not None and len(det):
det = xywh2xyxy(det) # Convert to [x1, y1, x2, y2]
for *xyxy, conf, cls in det:
x_center = (xyxy[0] + xyxy[2]) / 2
y_center = (xyxy[1] + xyxy[3]) / 2
positions.append((x_center.item(), y_center.item()))
frame_numbers.append(frame_num)
# Detect bounce (lowest y_center point)
if bounce_frame is None or y_center > positions[bounce_frame][1]:
bounce_frame = len(frame_numbers) - 1
bounce_point = (x_center.item(), y_center.item())
cap.release()
return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height
# Polynomial function for trajectory fitting
def poly_func(x, a, b, c):
return a * x**2 + b * x + c
# Predict trajectory and LBW decision
def predict_trajectory(positions, frame_numbers, frame_width, frame_height):
if len(positions) < 3:
return None, "Insufficient detections for trajectory prediction"
x_coords = [p[0] for p in positions]
y_coords = [p[1] for p in positions]
frames = np.array(frame_numbers)
# Fit polynomial to x and y coordinates
try:
popt_x, _ = curve_fit(poly_func, frames, x_coords)
popt_y, _ = curve_fit(poly_func, frames, y_coords)
except:
return None, "Failed to fit trajectory"
# Extrapolate to stumps
frame_max = max(frames) + 10
future_frames = np.linspace(min(frames), frame_max, 100)
x_pred = poly_func(future_frames, *popt_x)
y_pred = poly_func(future_frames, *popt_y)
# Check if trajectory hits stumps
stump_x = frame_width / 2
stump_y = frame_height
stump_hit = False
for x, y in zip(x_pred, y_pred):
if abs(y - stump_y) < 50 and abs(x - stump_x) < STUMP_WIDTH * frame_width / PITCH_WIDTH:
stump_hit = True
break
lbw_decision = "OUT" if stump_hit else "NOT OUT"
return list(zip(future_frames, x_pred, y_pred)), lbw_decision
# Map pitch location
def map_pitch(bounce_point, frame_width, frame_height):
if bounce_point is None:
return None, "No bounce detected"
x, y = bounce_point
pitch_x = (x / frame_width) * PITCH_WIDTH - PITCH_WIDTH / 2
pitch_y = (1 - y / frame_height) * PITCH_LENGTH
return pitch_x, pitch_y
# Estimate ball speed
def estimate_speed(positions, frame_numbers, frame_rate, frame_width):
if len(positions) < 2:
return None, "Insufficient detections for speed estimation"
distances = []
for i in range(1, len(positions)):
x1, y1 = positions[i-1]
x2, y2 = positions[i]
pixel_dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
distances.append(pixel_dist)
pixel_to_meter = PITCH_LENGTH / frame_width
distances_m = [d * pixel_to_meter for d in distances]
time_interval = 1 / frame_rate
speeds = [d / time_interval for d in distances_m]
avg_speed_kmh = np.mean(speeds) * 3.6
return avg_speed_kmh, "Speed calculated successfully"
# Create pitch map visualization
def create_pitch_map(pitch_x, pitch_y):
fig = go.Figure()
fig.add_shape(
type="rect", x0=-PITCH_WIDTH/2, y0=0, x1=PITCH_WIDTH/2, y1=PITCH_LENGTH,
line=dict(color="Green"), fillcolor="Green", opacity=0.3
)
fig.add_shape(
type="rect", x0=-STUMP_WIDTH/2, y0=PITCH_LENGTH-0.1, x1=STUMP_WIDTH/2, y1=PITCH_LENGTH,
line=dict(color="Brown"), fillcolor="Brown"
)
if pitch_x is not None and pitch_y is not None:
fig.add_trace(go.Scatter(x=[pitch_x], y=[pitch_y], mode="markers", marker=dict(size=10, color="Red"), name="Bounce Point"))
fig.update_layout(
title="Pitch Map", xaxis_title="Width (m)", yaxis_title="Length (m)",
xaxis_range=[-PITCH_WIDTH/2, PITCH_WIDTH/2], yaxis_range=[0, PITCH_LENGTH]
)
return fig
# Main Gradio function
def drs_analysis(video):
video_path = "temp_video.mp4"
with open(video_path, "wb") as f:
f.write(video.read())
positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height = process_video(video_path)
if not positions:
return None, None, "No ball detected in video", None
trajectory, lbw_decision = predict_trajectory(positions, frame_numbers, frame_width, frame_height)
if trajectory is None:
return None, None, lbw_decision, None
pitch_x, pitch_y = map_pitch(bounce_point, frame_width, frame_height)
speed_kmh, speed_status = estimate_speed(positions, frame_numbers, frame_rate, frame_width)
trajectory_df = pd.DataFrame(trajectory, columns=["Frame", "X", "Y"])
fig_traj = px.line(trajectory_df, x="X", y="Y", title="Ball Trajectory (Pixel Coordinates)")
fig_traj.update_yaxes(autorange="reversed")
fig_pitch = create_pitch_map(pitch_x, pitch_y)
os.remove(video_path)
return fig_traj, fig_pitch, f"LBW Decision: {lbw_decision}\nSpeed: {speed_kmh:.2f} km/h", video_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Cricket DRS Analysis")
video_input = gr.Video(label="Upload Video Clip")
btn = gr.Button("Analyze")
trajectory_output = gr.Plot(label="Ball Trajectory")
pitch_output = gr.Plot(label="Pitch Map")
text_output = gr.Textbox(label="Analysis Results")
video_output = gr.Video(label="Processed Video")
btn.click(drs_analysis, inputs=video_input, outputs=[trajectory_output, pitch_output, text_output, video_output])
if __name__ == "__main__":
demo.launch()