|
import cv2 |
|
import numpy as np |
|
import torch |
|
from ultralytics import YOLO |
|
import gradio as gr |
|
from scipy.interpolate import interp1d |
|
from scipy.ndimage import uniform_filter1d |
|
import uuid |
|
import os |
|
|
|
|
|
model = YOLO("best.pt") |
|
|
|
|
|
STUMPS_WIDTH = 0.2286 |
|
FRAME_RATE = 20 |
|
SLOW_MOTION_FACTOR = 2 |
|
CONF_THRESHOLD = 0.3 |
|
PITCH_ZONE_Y = 0.8 |
|
IMPACT_ZONE_Y = 0.7 |
|
IMPACT_DELTA_Y = 20 |
|
STUMPS_HEIGHT = 0.711 |
|
|
|
def process_video(video_path): |
|
if not os.path.exists(video_path): |
|
return [], [], [], "Error: Video file not found" |
|
cap = cv2.VideoCapture(video_path) |
|
frames = [] |
|
ball_positions = [] |
|
detection_frames = [] |
|
debug_log = [] |
|
|
|
frame_count = 0 |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
frames.append(frame.copy()) |
|
|
|
frame = cv2.convertScaleAbs(frame, alpha=1.2, beta=10) |
|
results = model.predict(frame, conf=CONF_THRESHOLD) |
|
detections = [det for det in results[0].boxes if det.cls == 0] |
|
if len(detections) == 1: |
|
x1, y1, x2, y2 = detections[0].xyxy[0].cpu().numpy() |
|
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2]) |
|
detection_frames.append(len(frames) - 1) |
|
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2) |
|
frames[-1] = frame |
|
debug_log.append(f"Frame {frame_count}: {len(detections)} ball detections") |
|
frame_count += 1 |
|
cap.release() |
|
|
|
if not ball_positions: |
|
debug_log.append("No valid single-ball detections in any frame") |
|
else: |
|
debug_log.append(f"Total valid single-ball detections: {len(ball_positions)}") |
|
|
|
return frames, ball_positions, detection_frames, "\n".join(debug_log) |
|
|
|
def estimate_trajectory(ball_positions, detection_frames, frames): |
|
if len(ball_positions) < 2: |
|
return None, None, None, None, None, None, "Error: Fewer than 2 valid single-ball detections for trajectory" |
|
frame_height = frames[0].shape[0] |
|
|
|
|
|
window_size = 3 |
|
x_coords = uniform_filter1d([pos[0] for pos in ball_positions], size=window_size, mode='nearest') |
|
y_coords = uniform_filter1d([pos[1] for pos in ball_positions], size=window_size, mode='nearest') |
|
times = np.array([i / FRAME_RATE for i in range(len(ball_positions))]) |
|
|
|
pitch_idx = 0 |
|
for i, y in enumerate(y_coords): |
|
if y > frame_height * PITCH_ZONE_Y: |
|
pitch_idx = i |
|
break |
|
pitch_point = ball_positions[pitch_idx] |
|
pitch_frame = detection_frames[pitch_idx] |
|
|
|
impact_idx = None |
|
for i in range(1, len(y_coords)): |
|
if (y_coords[i] > frame_height * IMPACT_ZONE_Y and |
|
abs(y_coords[i] - y_coords[i-1]) > IMPACT_DELTA_Y): |
|
impact_idx = i |
|
break |
|
if impact_idx is None: |
|
impact_idx = len(y_coords) - 1 |
|
impact_point = ball_positions[impact_idx] |
|
impact_frame = detection_frames[impact_idx] |
|
|
|
x_coords = x_coords[:impact_idx + 1] |
|
y_coords = y_coords[:impact_idx + 1] |
|
times = times[:impact_idx + 1] |
|
|
|
try: |
|
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate") |
|
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate") |
|
except Exception as e: |
|
return None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}" |
|
|
|
vis_trajectory = list(zip(x_coords, y_coords)) |
|
t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 5) |
|
x_full = fx(t_full) |
|
y_full = fy(t_full) |
|
full_trajectory = list(zip(x_full, y_full)) |
|
|
|
debug_log = (f"Trajectory estimated successfully\n" |
|
f"Pitch point at frame {pitch_frame + 1}: ({pitch_point[0]:.1f}, {pitch_point[1]:.1f})\n" |
|
f"Impact point at frame {impact_frame + 1}: ({impact_point[0]:.1f}, {impact_point[1]:.1f})") |
|
return full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, debug_log |
|
|
|
def lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point): |
|
if not frames: |
|
return "Error: No frames processed", None, None, None |
|
if not full_trajectory or len(ball_positions) < 2: |
|
return "Not enough data (insufficient valid single-ball detections)", None, None, None |
|
|
|
frame_height, frame_width = frames[0].shape[:2] |
|
stumps_x = frame_width / 2 |
|
stumps_y = frame_height * 0.8 |
|
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0) |
|
batsman_area_y = frame_height * 0.7 |
|
|
|
pitch_x, pitch_y = pitch_point |
|
impact_x, impact_y = impact_point |
|
|
|
in_line_threshold = stumps_width_pixels / 2 |
|
if pitch_x < stumps_x - in_line_threshold or pitch_x > stumps_x + in_line_threshold: |
|
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", full_trajectory, pitch_point, impact_point |
|
|
|
if impact_y < batsman_area_y or impact_x < stumps_x - in_line_threshold or impact_x > stumps_x + in_line_threshold: |
|
return f"Not Out (Impact outside line or above batsman at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point |
|
|
|
hit_stumps = False |
|
for x, y in full_trajectory: |
|
if (abs(x - stumps_x) < in_line_threshold and |
|
abs(y - stumps_y) < frame_height * 0.1): |
|
hit_stumps = True |
|
break |
|
|
|
if hit_stumps: |
|
if abs(x - stumps_x) < in_line_threshold * 0.1: |
|
return f"Umpire's Call - Not Out (Ball clips stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point |
|
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point |
|
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point |
|
|
|
def generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path, decision): |
|
if not frames: |
|
return None |
|
frame_height, frame_width = frames[0].shape[:2] |
|
stumps_x = frame_width / 2 |
|
stumps_y = frame_height * 0.8 |
|
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0) |
|
stumps_height_pixels = frame_height * (STUMPS_HEIGHT / 3.0) |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height)) |
|
|
|
trajectory_points = np.array(vis_trajectory, dtype=np.int32).reshape((-1, 1, 2)) |
|
|
|
for i, frame in enumerate(frames): |
|
|
|
cv2.line(frame, (int(stumps_x - stumps_width_pixels / 2), int(stumps_y)), |
|
(int(stumps_x + stumps_width_pixels / 2), int(stumps_y)), (255, 255, 255), 2) |
|
cv2.line(frame, (int(stumps_x - stumps_width_pixels / 2), int(stumps_y - stumps_height_pixels)), |
|
(int(stumps_x - stumps_width_pixels / 2), int(stumps_y)), (255, 255, 255), 2) |
|
cv2.line(frame, (int(stumps_x + stumps_width_pixels / 2), int(stumps_y - stumps_height_pixels)), |
|
(int(stumps_x + stumps_width_pixels / 2), int(stumps_y)), (255, 255, 255), 2) |
|
|
|
|
|
cv2.line(frame, (int(stumps_x - stumps_width_pixels / 2), int(stumps_y)), |
|
(int(stumps_x + stumps_width_pixels / 2), int(stumps_y)), (255, 255, 0), 2) |
|
|
|
if i in detection_frames and trajectory_points.size > 0: |
|
idx = detection_frames.index(i) + 1 |
|
if idx <= len(trajectory_points): |
|
cv2.polylines(frame, [trajectory_points[:idx]], False, (0, 0, 255), 2) |
|
|
|
if pitch_point and i == pitch_frame: |
|
x, y = pitch_point |
|
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 0), -1) |
|
cv2.putText(frame, "Pitching", (int(x) + 10, int(y) - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) |
|
|
|
if impact_point and i == impact_frame: |
|
x, y = impact_point |
|
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1) |
|
cv2.putText(frame, "Impact", (int(x) + 10, int(y) + 20), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1) |
|
|
|
if impact_point and i == impact_frame and "Out" in decision: |
|
cv2.putText(frame, "Wickets", (int(stumps_x) - 50, int(stumps_y) - 20), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 165, 255), 1) |
|
|
|
for _ in range(SLOW_MOTION_FACTOR): |
|
out.write(frame) |
|
out.release() |
|
return output_path |
|
|
|
def drs_review(video): |
|
frames, ball_positions, detection_frames, debug_log = process_video(video) |
|
if not frames: |
|
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None |
|
full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, trajectory_log = estimate_trajectory(ball_positions, detection_frames, frames) |
|
decision, full_trajectory, pitch_point, impact_point = lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point) |
|
|
|
output_path = f"output_{uuid.uuid4()}.mp4" |
|
slow_motion_path = generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path, decision) |
|
|
|
debug_output = f"{debug_log}\n{trajectory_log}" |
|
return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path |
|
|
|
|
|
iface = gr.Interface( |
|
fn=drs_review, |
|
inputs=gr.Video(label="Upload Video Clip"), |
|
outputs=[ |
|
gr.Textbox(label="DRS Decision and Debug Log"), |
|
gr.Video(label="Optimized Slow-Motion Replay with Pitching (Green), Impact (Red), Wickets (Orange), Stumps (White), Crease (Yellow)") |
|
], |
|
title="AI-Powered DRS for LBW in Local Cricket", |
|
description="Upload a video clip of a cricket delivery to get an LBW decision and optimized slow-motion replay showing pitching (green circle), impact (red circle), wickets (orange text), stumps (white outline), and crease line (yellow line)." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |