DRS_AI / app.py
AjaykumarPilla's picture
Update app.py
a653421 verified
raw
history blame
6.34 kB
import cv2
import numpy as np
import torch
from ultralytics import YOLO
import gradio as gr
from scipy.interpolate import interp1d
import uuid
import os
# Load the trained YOLOv8n model from the Space's root directory
model = YOLO("best.pt") # Assumes best.pt is in the same directory as app.py
# Constants for LBW decision and video processing
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
FRAME_RATE = 30 # Input video frame rate
SLOW_MOTION_FACTOR = 6 # For very slow motion (6x slower)
CONF_THRESHOLD = 0.3 # Lowered confidence threshold for better detection
def process_video(video_path):
# Initialize video capture
if not os.path.exists(video_path):
return [], [], "Error: Video file not found"
cap = cv2.VideoCapture(video_path)
frames = []
ball_positions = []
debug_log = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
frames.append(frame.copy()) # Store original frame
# Detect ball using the trained YOLOv8n model
results = model.predict(frame, conf=CONF_THRESHOLD)
detections = 0
for detection in results[0].boxes:
if detection.cls == 0: # Assuming class 0 is the ball
detections += 1
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
# Draw bounding box on frame for visualization
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
frames[-1] = frame # Update frame with bounding box
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
cap.release()
if not ball_positions:
debug_log.append("No balls detected in any frame")
else:
debug_log.append(f"Total ball detections: {len(ball_positions)}")
return frames, ball_positions, "\n".join(debug_log)
def estimate_trajectory(ball_positions, frames):
# Simplified physics-based trajectory projection
if len(ball_positions) < 2:
return None, None, "Error: Fewer than 2 ball detections for trajectory"
# Extract x, y coordinates
x_coords = [pos[0] for pos in ball_positions]
y_coords = [pos[1] for pos in ball_positions]
times = np.arange(len(ball_positions)) / FRAME_RATE
# Interpolate to smooth trajectory
try:
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
except Exception as e:
return None, None, f"Error in trajectory interpolation: {str(e)}"
# Project trajectory forward (0.5 seconds post-impact)
t_future = np.linspace(times[-1], times[-1] + 0.5, 10)
x_future = fx(t_future)
y_future = fy(t_future)
return list(zip(x_future, y_future)), t_future, "Trajectory estimated successfully"
def lbw_decision(ball_positions, trajectory, frames):
# Simplified LBW logic
if not frames:
return "Error: No frames processed", None
if not trajectory or len(ball_positions) < 2:
return "Not enough data (insufficient ball detections)", None
# Assume stumps are at the bottom center of the frame (calibration needed)
frame_height, frame_width = frames[0].shape[:2]
stumps_x = frame_width / 2
stumps_y = frame_height * 0.9 # Approximate stumps position
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0) # Assume 3m pitch width
# Check pitching point (first detected position)
pitch_x, pitch_y = ball_positions[0]
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
return "Not Out (Pitched outside line)", None
# Check impact point (last detected position)
impact_x, impact_y = ball_positions[-1]
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
return "Not Out (Impact outside line)", None
# Check trajectory hitting stumps
for x, y in trajectory:
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
return "Out", trajectory
return "Not Out (Missing stumps)", trajectory
def generate_slow_motion(frames, trajectory, output_path):
# Generate very slow-motion video with ball detection and trajectory overlay
if not frames:
return None
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
for frame in frames:
if trajectory:
for x, y in trajectory:
cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1) # Blue dots for trajectory
for _ in range(SLOW_MOTION_FACTOR): # Duplicate frames for very slow motion
out.write(frame)
out.release()
return output_path
def drs_review(video):
# Process video and generate DRS output
frames, ball_positions, debug_log = process_video(video)
if not frames:
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
trajectory, _, trajectory_log = estimate_trajectory(ball_positions, frames)
decision, trajectory = lbw_decision(ball_positions, trajectory, frames)
# Generate slow-motion replay even if Trajectory fails
output_path = f"output_{uuid.uuid4()}.mp4"
slow_motion_path = generate_slow_motion(frames, trajectory, output_path)
# Combine debug logs for output
debug_output = f"{debug_log}\n{trajectory_log}"
return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
# Gradio interface
iface = gr.Interface(
fn=drs_review,
inputs=gr.Video(label="Upload Video Clip"),
outputs=[
gr.Textbox(label="DRS Decision and Debug Log"),
gr.Video(label="Very Slow-Motion Replay with Ball Detection and Trajectory")
],
title="AI-Powered DRS for LBW in Local Cricket",
description="Upload a video clip of a cricket delivery to get an LBW decision and very slow-motion replay showing ball detection (green boxes) and trajectory (blue dots)."
)
if __name__ == "__main__":
iface.launch()