AjaykumarPilla commited on
Commit
c9d4715
·
verified ·
1 Parent(s): 7e29aa0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -51
app.py CHANGED
@@ -6,7 +6,6 @@ import gradio as gr
6
  from scipy.interpolate import interp1d
7
  import uuid
8
  import os
9
- import time
10
 
11
  # Load the trained YOLOv8n model
12
  model = YOLO("best.pt")
@@ -15,14 +14,11 @@ model = YOLO("best.pt")
15
  STUMPS_WIDTH = 0.2286 # meters
16
  BALL_DIAMETER = 0.073 # meters
17
  FRAME_RATE = 30 # Input video frame rate
18
- SLOW_MOTION_FACTOR = 3 # Reduced from 6 for faster processing
19
  CONF_THRESHOLD = 0.3
20
- MAX_DETECTIONS = 10 # Stop after detecting enough ball positions
21
- PROCESS_EVERY_N_FRAME = 2 # Process every 2nd frame
22
- RESIZE_FACTOR = 0.5 # Downscale frames to 50% for faster processing
23
 
24
  def process_video(video_path):
25
- start_time = time.time()
26
  if not os.path.exists(video_path):
27
  return [], [], "Error: Video file not found"
28
  cap = cv2.VideoCapture(video_path)
@@ -30,123 +26,162 @@ def process_video(video_path):
30
  ball_positions = []
31
  debug_log = []
32
  frame_count = 0
33
- processed_frames = 0
34
 
35
- while cap.isOpened():
36
  ret, frame = cap.read()
37
  if not ret:
38
  break
39
  frame_count += 1
40
- if frame_count % PROCESS_EVERY_N_FRAME != 0:
41
- continue # Skip frames
42
- processed_frames += 1
43
- # Resize frame for faster processing
44
- frame_small = cv2.resize(frame, (0, 0), fx=RESIZE_FACTOR, fy=RESIZE_FACTOR)
45
  frames.append(frame.copy()) # Store original frame
46
  # Detect ball
47
- results = model.predict(frame_small, conf=CONF_THRESHOLD)
48
  detections = 0
 
49
  for detection in results[0].boxes:
50
  if detection.cls == 0: # Ball class
51
  detections += 1
52
  x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
53
  # Scale coordinates back to original frame size
54
- x1, y1, x2, y2 = [v / RESIZE_FACTOR for v in [x1, y1, x2, y2]]
55
- ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
56
- # Draw bounding box on original frame
 
57
  cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
58
  frames[-1] = frame
59
  debug_log.append(f"Frame {frame_count}: {detections} ball detections")
60
- if len(ball_positions) >= MAX_DETECTIONS:
61
- debug_log.append(f"Stopping early after {len(ball_positions)} detections")
62
- break
63
  cap.release()
64
 
65
- debug_log.append(f"Processed {processed_frames} frames in {time.time() - start_time:.2f} seconds")
66
  if not ball_positions:
67
  debug_log.append("No balls detected in any frame")
68
  else:
69
  debug_log.append(f"Total ball detections: {len(ball_positions)}")
 
70
  return frames, ball_positions, "\n".join(debug_log)
71
 
72
  def estimate_trajectory(ball_positions, frames):
73
- start_time = time.time()
74
  if len(ball_positions) < 2:
75
- return None, None, "Error: Fewer than 2 ball detections for trajectory"
76
  x_coords = [pos[0] for pos in ball_positions]
77
  y_coords = [pos[1] for pos in ball_positions]
78
  times = np.arange(len(ball_positions)) / FRAME_RATE
 
79
  try:
80
  fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
81
  fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
82
  except Exception as e:
83
- return None, None, f"Error in trajectory interpolation: {str(e)}"
84
- t_future = np.linspace(times[-1], times[-1] + 0.5, 10)
85
- x_future = fx(t_future)
86
- y_future = fy(t_future)
87
- debug_log = f"Trajectory estimated in {time.time() - start_time:.2f} seconds"
88
- return list(zip(x_future, y_future)), t_future, debug_log
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  def lbw_decision(ball_positions, trajectory, frames):
91
- start_time = time.time()
92
  if not frames:
93
  return "Error: No frames processed", None, None, None
94
- if not trajectory or len(ball_positions) < 2:
95
  return "Not enough data (insufficient ball detections)", None, None, None
 
96
  frame_height, frame_width = frames[0].shape[:2]
97
  stumps_x = frame_width / 2
98
  stumps_y = frame_height * 0.9
99
  stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
 
100
  pitch_point = ball_positions[0]
101
- impact_point = ball_positions[-1]
 
 
102
  pitch_x, pitch_y = pitch_point
103
- if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
104
  return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
 
 
105
  impact_x, impact_y = impact_point
106
  if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
107
  return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
 
 
108
  for x, y in trajectory:
109
  if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
110
  return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
111
- debug_log = f"LBW decision computed in {time.time() - start_time:.2f} seconds"
112
  return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
113
 
114
- def generate_slow_motion(frames, trajectory, pitch_point, impact_point, output_path):
115
- start_time = time.time()
116
  if not frames:
117
  return None
118
  fourcc = cv2.VideoWriter_fourcc(*'mp4v')
119
  out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
120
- for frame in frames:
121
- if trajectory:
122
- for x, y in trajectory:
123
- cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1)
124
- if pitch_point:
 
 
 
 
125
  x, y = pitch_point
126
- cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
127
  cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
128
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
129
- if impact_point:
 
 
130
  x, y = impact_point
131
- cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
132
  cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
133
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
 
134
  for _ in range(SLOW_MOTION_FACTOR):
135
  out.write(frame)
136
  out.release()
137
- debug_log = f"Slow-motion video generated in {time.time() - start_time:.2f} seconds"
138
- return output_path, debug_log
139
 
140
  def drs_review(video):
141
- start_time = time.time()
142
  frames, ball_positions, debug_log = process_video(video)
143
  if not frames:
144
  return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
145
  trajectory, _, trajectory_log = estimate_trajectory(ball_positions, frames)
146
  decision, trajectory, pitch_point, impact_point = lbw_decision(ball_positions, trajectory, frames)
 
 
147
  output_path = f"output_{uuid.uuid4()}.mp4"
148
- slow_motion_path, slow_motion_log = generate_slow_motion(frames, trajectory, pitch_point, impact_point, output_path)
149
- debug_output = f"{debug_log}\n{trajectory_log}\n{slow_motion_log}\nTotal processing time: {time.time() - start_time:.2f} seconds"
 
150
  return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
151
 
152
  # Gradio interface
@@ -155,10 +190,9 @@ iface = gr.Interface(
155
  inputs=gr.Video(label="Upload Video Clip"),
156
  outputs=[
157
  gr.Textbox(label="DRS Decision and Debug Log"),
158
- gr.Video(label="Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue), Pitch Point (Red), Impact Point (Yellow)")
159
  ],
160
  title="AI-Powered DRS for LBW in Local Cricket",
161
- description="Upload a 3-second video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue dots), pitch point (red circle), and impact point (yellow circle)."
162
  )
163
 
164
  if __name__ == "__main__":
 
6
  from scipy.interpolate import interp1d
7
  import uuid
8
  import os
 
9
 
10
  # Load the trained YOLOv8n model
11
  model = YOLO("best.pt")
 
14
  STUMPS_WIDTH = 0.2286 # meters
15
  BALL_DIAMETER = 0.073 # meters
16
  FRAME_RATE = 30 # Input video frame rate
17
+ SLOW_MOTION_FACTOR = 6
18
  CONF_THRESHOLD = 0.3
19
+ RESIZE_DIM = 640 # Resize frames for faster processing
 
 
20
 
21
  def process_video(video_path):
 
22
  if not os.path.exists(video_path):
23
  return [], [], "Error: Video file not found"
24
  cap = cv2.VideoCapture(video_path)
 
26
  ball_positions = []
27
  debug_log = []
28
  frame_count = 0
29
+ max_frames = FRAME_RATE * 3 # Limit to 3 seconds of frames
30
 
31
+ while cap.isOpened() and frame_count < max_frames:
32
  ret, frame = cap.read()
33
  if not ret:
34
  break
35
  frame_count += 1
36
+ # Resize frame for faster YOLO inference
37
+ frame_resized = cv2.resize(frame, (RESIZE_DIM, RESIZE_DIM), interpolation=cv2.INTER_AREA)
 
 
 
38
  frames.append(frame.copy()) # Store original frame
39
  # Detect ball
40
+ results = model.predict(frame_resized, conf=CONF_THRESHOLD, imgsz=RESIZE_DIM)
41
  detections = 0
42
+ scale_x, scale_y = frame.shape[1] / RESIZE_DIM, frame.shape[0] / RESIZE_DIM
43
  for detection in results[0].boxes:
44
  if detection.cls == 0: # Ball class
45
  detections += 1
46
  x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
47
  # Scale coordinates back to original frame size
48
+ x1, x2 = x1 * scale_x, x2 * scale_x
49
+ y1, y2 = y1 * scale_y, y2 * scale_y
50
+ ball_center = [(x1 + x2) / 2, (y1 + y2) / 2]
51
+ ball_positions.append(ball_center)
52
  cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
53
  frames[-1] = frame
54
  debug_log.append(f"Frame {frame_count}: {detections} ball detections")
 
 
 
55
  cap.release()
56
 
 
57
  if not ball_positions:
58
  debug_log.append("No balls detected in any frame")
59
  else:
60
  debug_log.append(f"Total ball detections: {len(ball_positions)}")
61
+
62
  return frames, ball_positions, "\n".join(debug_log)
63
 
64
  def estimate_trajectory(ball_positions, frames):
 
65
  if len(ball_positions) < 2:
66
+ return [], [], "Error: Fewer than 2 ball detections for trajectory"
67
  x_coords = [pos[0] for pos in ball_positions]
68
  y_coords = [pos[1] for pos in ball_positions]
69
  times = np.arange(len(ball_positions)) / FRAME_RATE
70
+
71
  try:
72
  fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
73
  fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
74
  except Exception as e:
75
+ return [], [], f"Error in trajectory interpolation: {str(e)}"
76
+
77
+ # Interpolate for all frames and future projection
78
+ t_all = np.linspace(0, times[-1] + 0.5, len(frames) + 10)
79
+ x_all = fx(t_all)
80
+ y_all = fy(t_all)
81
+ trajectory = list(zip(x_all, y_all))
82
+ return trajectory, t_all, "Trajectory estimated successfully"
83
+
84
+ def detect_impact_point(ball_positions, frames):
85
+ if len(ball_positions) < 3:
86
+ return ball_positions[-1] if ball_positions else None, len(ball_positions) - 1
87
+ # Assume batsman is near stumps (bottom center of frame)
88
+ frame_height, frame_width = frames[0].shape[:2]
89
+ batsman_x = frame_width / 2
90
+ batsman_y = frame_height * 0.8 # Approximate batsman position
91
+ min_dist = float('inf')
92
+ impact_idx = len(ball_positions) - 1
93
+ impact_point = ball_positions[-1]
94
+
95
+ # Look for sudden change in trajectory or proximity to batsman
96
+ for i in range(1, len(ball_positions) - 1):
97
+ x, y = ball_positions[i]
98
+ prev_x, prev_y = ball_positions[i-1]
99
+ next_x, next_y = ball_positions[i+1]
100
+ # Check direction change (simplified)
101
+ dx1, dy1 = x - prev_x, y - prev_y
102
+ dx2, dy2 = next_x - x, next_y - y
103
+ angle_change = abs(np.arctan2(dy2, dx2) - np.arctan2(dy1, dx1))
104
+ dist_to_batsman = np.sqrt((x - batsman_x)**2 + (y - batsman_y)**2)
105
+ if angle_change > np.pi/4 or dist_to_batsman < frame_width * 0.1:
106
+ impact_idx = i
107
+ impact_point = ball_positions[i]
108
+ break
109
+
110
+ return impact_point, impact_idx
111
 
112
  def lbw_decision(ball_positions, trajectory, frames):
 
113
  if not frames:
114
  return "Error: No frames processed", None, None, None
115
+ if len(ball_positions) < 2:
116
  return "Not enough data (insufficient ball detections)", None, None, None
117
+
118
  frame_height, frame_width = frames[0].shape[:2]
119
  stumps_x = frame_width / 2
120
  stumps_y = frame_height * 0.9
121
  stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
122
+
123
  pitch_point = ball_positions[0]
124
+ impact_point, impact_idx = detect_impact_point(ball_positions, frames)
125
+
126
+ # Check pitching point
127
  pitch_x, pitch_y = pitch_point
128
+ if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x Moderation: x > stumps_x + stumps_width_pixels / 2:
129
  return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
130
+
131
+ # Check impact point
132
  impact_x, impact_y = impact_point
133
  if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
134
  return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
135
+
136
+ # Check trajectory hitting stumps
137
  for x, y in trajectory:
138
  if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
139
  return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
 
140
  return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
141
 
142
+ def generate_slow_motion(frames, trajectory, pitch_point, impact_point, impact_idx, output_path):
 
143
  if not frames:
144
  return None
145
  fourcc = cv2.VideoWriter_fourcc(*'mp4v')
146
  out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
147
+
148
+ for i, frame in enumerate(frames):
149
+ # Draw trajectory up to current frame
150
+ traj_points = [p for j, p in enumerate(trajectory) if j / SLOW_MOTION_FACTOR <= i]
151
+ for x, y in traj_points:
152
+ cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1) # Blue dots
153
+
154
+ # Draw pitch point in early frames
155
+ if pitch_point and i < len(frames) // 2:
156
  x, y = pitch_point
157
+ cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1) # Red circle
158
  cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
159
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
160
+
161
+ # Draw impact point around impact frame
162
+ if impact_point and abs(i - impact_idx) < 5:
163
  x, y = impact_point
164
+ cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1) # Yellow circle
165
  cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
166
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
167
+
168
  for _ in range(SLOW_MOTION_FACTOR):
169
  out.write(frame)
170
  out.release()
171
+ return output_path
 
172
 
173
  def drs_review(video):
 
174
  frames, ball_positions, debug_log = process_video(video)
175
  if not frames:
176
  return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
177
  trajectory, _, trajectory_log = estimate_trajectory(ball_positions, frames)
178
  decision, trajectory, pitch_point, impact_point = lbw_decision(ball_positions, trajectory, frames)
179
+ _, impact_idx = detect_impact_point(ball_positions, frames)
180
+
181
  output_path = f"output_{uuid.uuid4()}.mp4"
182
+ slow_motion_path = generate_slow_motion(frames, trajectory, pitch_point, impact_point, impact_idx, output_path)
183
+
184
+ debug_output = f"{debug_log}\n{trajectory_log}"
185
  return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
186
 
187
  # Gradio interface
 
190
  inputs=gr.Video(label="Upload Video Clip"),
191
  outputs=[
192
  gr.Textbox(label="DRS Decision and Debug Log"),
193
+ gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue), Pitch Point (Red), Impact Point (Yellow)")
194
  ],
195
  title="AI-Powered DRS for LBW in Local Cricket",
 
196
  )
197
 
198
  if __name__ == "__main__":