import gradio as gr import torch import cv2 import numpy as np import matplotlib.pyplot as plt from yolov5 import YOLOv5 # Load YOLOv5 model (best.pt) model = YOLOv5("best.pt") # Adjust the path to your model file # Function to process the video and calculate ball trajectory, speed, and visualize the pitch def process_video(video_file): # Load video file using OpenCV video = cv2.VideoCapture(video_file.name) ball_positions = [] speed_data = [] frame_count = 0 last_position = None while video.isOpened(): ret, frame = video.read() if not ret: break frame_count += 1 # Run YOLOv5 model on the frame to detect ball results = model(frame) # Extract the ball position (assuming class 0 = ball) ball_detections = results.pandas().xywh ball = ball_detections[ball_detections['class'] == 0] # class 0 is ball, adjust as needed if not ball.empty: ball_x = ball.iloc[0]['xmin'] + (ball.iloc[0]['xmax'] - ball.iloc[0]['xmin']) / 2 ball_y = ball.iloc[0]['ymin'] + (ball.iloc[0]['ymax'] - ball.iloc[0]['ymin']) / 2 ball_positions.append((frame_count, ball_x, ball_y)) # Track position in each frame if last_position is not None: # Calculate speed based on pixel displacement between frames distance = np.sqrt((ball_x - last_position[1]) ** 2 + (ball_y - last_position[2]) ** 2) fps = video.get(cv2.CAP_PROP_FPS) # Frames per second of the video speed = distance * fps # Speed = distance / time (time between frames is 1/fps) speed_data.append(speed) last_position = (frame_count, ball_x, ball_y) # Update last position video.release() # Ball trajectory plot plot_trajectory(ball_positions) # Return results avg_speed = np.mean(speed_data) if speed_data else 0 return f"Average Ball Speed: {avg_speed:.2f} pixels per second" # Function to plot ball trajectory using matplotlib def plot_trajectory(ball_positions): x_positions = [pos[1] for pos in ball_positions] y_positions = [pos[2] for pos in ball_positions] plt.figure(figsize=(10, 6)) plt.plot(x_positions, y_positions, label="Ball Trajectory", color='b') plt.title("Ball Trajectory on Pitch") plt.xlabel("X Position (pitch width)") plt.ylabel("Y Position (pitch length)") plt.grid(True) plt.legend() plt.show() # Gradio interface for the app iface = gr.Interface( fn=process_video, # Function to call when video is uploaded inputs=gr.inputs.File(label="Upload a Video File"), # File input (video) outputs="text", # Output the result as text live=True # Keep the interface live ) iface.launch(debug=True)