Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import torch | |
from ultralytics import YOLO | |
import gradio as gr | |
from scipy.interpolate import interp1d | |
import uuid | |
import os | |
# Load the trained YOLOv8n model | |
model = YOLO("best.pt") | |
# Constants for LBW decision and video processing | |
STUMPS_WIDTH = 0.2286 # meters (width of stumps) | |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter) | |
FRAME_RATE = 20 # Input video frame rate (reduced to 20 FPS) | |
SLOW_MOTION_FACTOR = 3 # Adjusted for 20 FPS (slower playback without being too slow) | |
CONF_THRESHOLD = 0.25 # Confidence threshold for detection | |
IMPACT_ZONE_Y = 0.85 # Fraction of frame height where impact is likely (near stumps) | |
def process_video(video_path): | |
if not os.path.exists(video_path): | |
return [], [], [], "Error: Video file not found" | |
cap = cv2.VideoCapture(video_path) | |
frames = [] | |
ball_positions = [] | |
detection_frames = [] # Track frames with detections | |
debug_log = [] | |
frame_count = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
frames.append(frame.copy()) | |
results = model.predict(frame, conf=CONF_THRESHOLD) | |
detections = 0 | |
for detection in results[0].boxes: | |
if detection.cls == 0: # Assuming class 0 is the ball | |
detections += 1 | |
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy() | |
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2]) | |
detection_frames.append(frame_count - 1) # Store frame index (0-based) | |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2) | |
frames[-1] = frame | |
debug_log.append(f"Frame {frame_count}: {detections} ball detections") | |
cap.release() | |
if not ball_positions: | |
debug_log.append("No balls detected in any frame") | |
else: | |
debug_log.append(f"Total ball detections: {len(ball_positions)}") | |
return frames, ball_positions, detection_frames, "\n".join(debug_log) | |
def estimate_trajectory(ball_positions, frames): | |
if len(ball_positions) < 2: | |
return None, None, None, "Error: Fewer than 2 ball detections for trajectory" | |
frame_height = frames[0].shape[0] | |
# Extract x, y coordinates | |
x_coords = [pos[0] for pos in ball_positions] | |
y_coords = [pos[1] for pos in ball_positions] | |
times = np.arange(len(ball_positions)) / FRAME_RATE | |
# Find impact point (closest to batsman, near stumps) | |
impact_idx = None | |
for i, y in enumerate(y_coords): | |
if y > frame_height * IMPACT_ZONE_Y: # Ball is near stumps/batsman | |
impact_idx = i | |
break | |
if impact_idx is None: | |
impact_idx = len(ball_positions) - 1 # Fallback to last detection | |
pitch_point = ball_positions[0] | |
impact_point = ball_positions[impact_idx] | |
# Use positions up to impact for interpolation | |
x_coords = x_coords[:impact_idx + 1] | |
y_coords = y_coords[:impact_idx + 1] | |
times = times[:impact_idx + 1] | |
try: | |
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate") | |
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate") | |
except Exception as e: | |
return None, None, None, f"Error in trajectory interpolation: {str(e)}" | |
# Project trajectory (detected + future for LBW decision) | |
t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 10) | |
x_full = fx(t_full) | |
y_full = fy(t_full) | |
trajectory = list(zip(x_full, y_full)) | |
return trajectory, pitch_point, impact_point, "Trajectory estimated successfully" | |
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point): | |
if not frames: | |
return "Error: No frames processed", None, None, None | |
if not trajectory or len(ball_positions) < 2: | |
return "Not enough data (insufficient ball detections)", None, None, None | |
frame_height, frame_width = frames[0].shape[:2] | |
stumps_x = frame_width / 2 | |
stumps_y = frame_height * 0.9 # Position of the stumps at the bottom of the frame | |
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0) | |
pitch_x, pitch_y = pitch_point | |
impact_x, impact_y = impact_point | |
# Check pitching point - the ball should land between stumps | |
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2: | |
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point | |
# Check impact point - the ball should hit within the stumps area | |
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2: | |
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point | |
# Check trajectory hitting stumps | |
for x, y in trajectory: | |
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1: | |
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point | |
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point | |
def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, output_path): | |
if not frames: | |
return None | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0])) | |
trajectory_points = np.array(trajectory[:len(detection_frames)], dtype=np.int32).reshape((-1, 1, 2)) | |
for i, frame in enumerate(frames): | |
# Draw trajectory (blue line) only for frames with detections | |
if i in detection_frames and trajectory_points.size > 0: | |
cv2.polylines(frame, [trajectory_points[:detection_frames.index(i) + 1]], False, (255, 0, 0), 2) | |
# Draw pitch point (red circle with label) when the ball touches the ground (y < ground threshold) | |
if pitch_point and impact_point and i >= detection_frames[0]: | |
x, y = pitch_point | |
if y > frame.shape[0] * 0.75: # Threshold for ground contact (adjust as necessary) | |
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1) | |
cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) | |
# Draw impact point (yellow circle with label) when ball is near stumps (y near bottom) | |
if impact_point and i >= detection_frames[min(len(detection_frames) - 1, detection_frames.index(detection_frames[-1]))]: | |
x, y = impact_point | |
if y > frame.shape[0] * 0.85: # Threshold for impact (adjust as necessary) | |
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1) | |
cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2) | |
for _ in range(SLOW_MOTION_FACTOR): | |
out.write(frame) | |
out.release() | |
return output_path | |
def drs_review(video): | |
frames, ball_positions, detection_frames, debug_log = process_video(video) | |
if not frames: | |
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None | |
trajectory, pitch_point, impact_point, trajectory_log = estimate_trajectory(ball_positions, frames) | |
decision, trajectory, pitch_point, impact_point = lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point) | |
output_path = f"output_{uuid.uuid4()}.mp4" | |
slow_motion_path = generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, output_path) | |
debug_output = f"{debug_log}\n{trajectory_log}" | |
return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path | |
# Gradio interface | |
iface = gr.Interface( | |
fn=drs_review, | |
inputs=gr.Video(label="Upload Video Clip"), | |
outputs=[ | |
gr.Textbox(label="DRS Decision and Debug Log"), | |
gr.Video(label="Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)") | |
], | |
title="AI-Powered DRS for LBW in Local Cricket", | |
description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle)." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |