DRS_AIP_LBW / app.py
AjaykumarPilla's picture
Update app.py
1a9ae2d verified
raw
history blame
11.6 kB
import cv2
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import torch
import gradio as gr
import os
import time
from scipy.optimize import curve_fit
import sys
# Add yolov5 directory to sys.path
sys.path.append(os.path.join(os.path.dirname(__file__), "yolov5"))
# Import YOLOv5 modules
from models.experimental import attempt_load
from utils.general import non_max_suppression, xywh2xyxy
# Cricket pitch dimensions (in meters)
PITCH_LENGTH = 20.12 # Length of cricket pitch (stumps to stumps)
PITCH_WIDTH = 3.05 # Width of pitch
STUMP_HEIGHT = 0.71 # Stump height
STUMP_WIDTH = 0.2286 # Stump width (including bails)
# Model input size (adjust if yolov5s.pt was trained with a different size)
MODEL_INPUT_SIZE = (640, 640) # (height, width)
FRAME_SKIP = 2 # Process every 2nd frame
MIN_DETECTIONS = 10 # Stop after 10 detections
BATCH_SIZE = 4 # Process 4 frames at a time
SLOW_MOTION_FACTOR = 3 # Duplicate each frame 3 times for slow motion
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = attempt_load("yolov5s.pt") # Load yolov5s.pt
model.to(device).eval() # Move model to device and set to evaluation mode
# Function to process video and detect ball
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
positions = []
frame_numbers = []
bounce_frame = None
bounce_point = None
batch_frames = []
batch_frame_nums = []
frame_count = 0
start_time = time.time()
while cap.isOpened():
frame_num = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
ret, frame = cap.read()
if not ret:
break
# Skip frames
if frame_count % FRAME_SKIP != 0:
frame_count += 1
continue
# Resize frame to model input size
frame = cv2.resize(frame, MODEL_INPUT_SIZE, interpolation=cv2.INTER_AREA)
batch_frames.append(frame)
batch_frame_nums.append(frame_num)
frame_count += 1
# Process batch when full or at end
if len(batch_frames) == BATCH_SIZE or not ret:
# Preprocess batch
batch = [cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in batch_frames]
batch = np.stack(batch) # [batch_size, H, W, 3]
batch = torch.from_numpy(batch).to(device).float() / 255.0
batch = batch.permute(0, 3, 1, 2) # [batch_size, 3, H, W]
# Run inference
frame_start_time = time.time()
with torch.no_grad():
pred = model(batch)[0]
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
print(f"Batch inference time: {time.time() - frame_start_time:.2f}s for {len(batch_frames)} frames")
# Process detections
for i, det in enumerate(pred):
if det is not None and len(det):
det = xywh2xyxy(det) # Convert to [x1, y1, x2, y2]
for *xyxy, conf, cls in det:
x_center = (xyxy[0] + xyxy[2]) / 2
y_center = (xyxy[1] + xyxy[3]) / 2
# Scale coordinates back to original frame size
x_center = x_center * frame_width / MODEL_INPUT_SIZE[1]
y_center = y_center * frame_height / MODEL_INPUT_SIZE[0]
positions.append((x_center.item(), y_center.item()))
frame_numbers.append(batch_frame_nums[i])
# Detect bounce (lowest y_center point)
if bounce_frame is None or y_center > positions[bounce_frame][1]:
bounce_frame = len(frame_numbers) - 1
bounce_point = (x_center.item(), y_center.item())
batch_frames = []
batch_frame_nums = []
# Early termination
if len(positions) >= MIN_DETECTIONS:
break
cap.release()
print(f"Total video processing time: {time.time() - start_time:.2f}s")
return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height
# Polynomial function for trajectory fitting
def poly_func(x, a, b, c):
return a * x**2 + b * x + c
# Predict trajectory and wicket inline path
def predict_trajectory(positions, frame_numbers, frame_width, frame_height):
if len(positions) < 3:
return None, None, "Insufficient detections for trajectory prediction"
x_coords = [p[0] for p in positions]
y_coords = [p[1] for p in positions]
frames = np.array(frame_numbers)
# Fit polynomial to x and y coordinates
try:
popt_x, _ = curve_fit(poly_func, frames, x_coords)
popt_y, _ = curve_fit(poly_func, frames, y_coords)
except:
return None, None, "Failed to fit trajectory"
# Extrapolate to stumps
frame_max = max(frames) + 10
future_frames = np.linspace(min(frames), frame_max, 100)
x_pred = poly_func(future_frames, *popt_x)
y_pred = poly_func(future_frames, *popt_y)
# Wicket inline path (center line toward stumps)
stump_x = frame_width / 2
stump_y = frame_height
inline_x = np.linspace(min(x_coords), stump_x, 100)
inline_y = np.interp(inline_x, x_pred, y_pred)
# Check if trajectory hits stumps
stump_hit = False
for x, y in zip(x_pred, y_pred):
if abs(y - stump_y) < 50 and abs(x - stump_x) < STUMP_WIDTH * frame_width / PITCH_WIDTH:
stump_hit = True
break
lbw_decision = "OUT" if stump_hit else "NOT OUT"
return list(zip(future_frames, x_pred, y_pred)), list(zip(inline_x, inline_y)), lbw_decision
# Map pitch location
def map_pitch(bounce_point, frame_width, frame_height):
if bounce_point is None:
return None, "No bounce detected"
x, y = bounce_point
pitch_x = (x / frame_width) * PITCH_WIDTH - PITCH_WIDTH / 2
pitch_y = (1 - y / frame_height) * PITCH_LENGTH
return pitch_x, pitch_y
# Estimate ball speed
def estimate_speed(positions, frame_numbers, frame_rate, frame_width):
if len(positions) < 2:
return None, "Insufficient detections for speed estimation"
distances = []
for i in range(1, len(positions)):
x1, y1 = positions[i-1]
x2, y2 = positions[i]
pixel_dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
distances.append(pixel_dist)
pixel_to_meter = PITCH_LENGTH / frame_width
distances_m = [d * pixel_to_meter for d in distances]
time_interval = 1 / frame_rate
speeds = [d / time_interval for d in distances_m]
avg_speed_kmh = np.mean(speeds) * 3.6
return avg_speed_kmh, "Speed calculated successfully"
# Main Gradio function with video overlay and slow motion
def drs_analysis(video):
# Video is a file path (string) in Hugging Face Spaces
video_path = video if isinstance(video, str) else "temp_video.mp4"
if not isinstance(video, str):
with open(video_path, "wb") as f:
f.write(video.read())
# Process video for detections
positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height = process_video(video_path)
if not positions:
return None, None, "No ball detected in video", None
# Predict trajectory and wicket path
trajectory, inline_path, lbw_decision = predict_trajectory(positions, frame_numbers, frame_width, frame_height)
if trajectory is None:
return None, None, lbw_decision, None
pitch_x, pitch_y = map_pitch(bounce_point, frame_width, frame_height)
speed_kmh, speed_status = estimate_speed(positions, frame_numbers, frame_rate, frame_width)
# Create output video with overlays and slow motion
output_path = "output_video.mp4"
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, frame_rate, (frame_width, frame_height))
frame_count = 0
positions_dict = dict(zip(frame_numbers, positions))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Skip frames for consistency with detection
if frame_count % FRAME_SKIP != 0:
frame_count += 1
continue
# Overlay ball trajectory (red) and wicket inline path (blue)
if frame_count in positions_dict:
cv2.circle(frame, (int(positions_dict[frame_count][0]), int(positions_dict[frame_count][1])), 5, (0, 0, 255), -1) # Red dot
if trajectory:
traj_x = [int(t[1]) for t in trajectory if t[0] >= frame_count]
traj_y = [int(t[2]) for t in trajectory if t[0] >= frame_count]
if traj_x and traj_y:
for i in range(1, len(traj_x)):
cv2.line(frame, (traj_x[i-1], traj_y[i-1]), (traj_x[i], traj_y[i]), (0, 0, 255), 2) # Red line
if inline_path:
inline_x = [int(x) for x, _ in inline_path]
inline_y = [int(y) for _, y in inline_path]
if inline_x and inline_y:
for i in range(1, len(inline_x)):
cv2.line(frame, (inline_x[i-1], inline_y[i-1]), (inline_x[i], inline_y[i]), (255, 0, 0), 2) # Blue line
# Overlay pitch map in top-right corner
if pitch_x is not None and pitch_y is not None:
map_width = 200
# Cap map_height to 25% of frame height to ensure it fits
map_height = min(int(map_width * PITCH_LENGTH / PITCH_WIDTH), frame_height // 4)
pitch_map = np.zeros((map_height, map_width, 3), dtype=np.uint8)
pitch_map[:] = (0, 255, 0) # Green pitch
cv2.rectangle(pitch_map, (0, map_height-10), (map_width, map_height), (0, 51, 51), -1) # Brown stumps
bounce_x = int((pitch_x + PITCH_WIDTH/2) / PITCH_WIDTH * map_width)
bounce_y = int((1 - pitch_y / PITCH_LENGTH) * map_height)
cv2.circle(pitch_map, (bounce_x, bounce_y), 5, (0, 0, 255), -1) # Red bounce point
# Ensure overlay fits within frame
overlay_region = frame[0:map_height, frame_width-map_width:frame_width]
if overlay_region.shape[0] >= map_height and overlay_region.shape[1] >= map_width:
frame[0:map_height, frame_width-map_width:frame_width] = cv2.resize(pitch_map, (map_width, map_height))
# Add text annotations
text = f"LBW: {lbw_decision}\nSpeed: {speed_kmh:.2f} km/h"
cv2.putText(frame, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
# Write frame multiple times for slow motion
for _ in range(SLOW_MOTION_FACTOR):
out.write(frame)
frame_count += 1
cap.release()
out.release()
if not isinstance(video, str):
os.remove(video_path)
return None, None, None, output_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Cricket DRS Analysis")
video_input = gr.Video(label="Upload Video Clip")
btn = gr.Button("Analyze")
trajectory_output = gr.Plot(label="Ball Trajectory")
pitch_output = gr.Plot(label="Pitch Map")
text_output = gr.Textbox(label="Analysis Results")
video_output = gr.Video(label="Processed Video")
btn.click(drs_analysis, inputs=video_input, outputs=[trajectory_output, pitch_output, text_output, video_output])
if __name__ == "__main__":
demo.launch()