dschandra commited on
Commit
600b0cd
·
verified ·
1 Parent(s): b9d0a48

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -6
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import pandas as pd
3
  from sentence_transformers import SentenceTransformer, util
4
 
5
- # Load FAQs
6
  faq_df = pd.read_csv("lic_faq.csv")
7
  model = SentenceTransformer('all-MiniLM-L6-v2')
8
  faq_embeddings = model.encode(faq_df['question'].tolist(), convert_to_tensor=True)
@@ -10,10 +10,40 @@ faq_embeddings = model.encode(faq_df['question'].tolist(), convert_to_tensor=Tru
10
  def chatbot(query):
11
  query_embedding = model.encode(query, convert_to_tensor=True)
12
  scores = util.pytorch_cos_sim(query_embedding, faq_embeddings)[0]
13
- best_idx = scores.argmax()
14
  return faq_df.iloc[best_idx]['answer']
15
 
16
- iface = gr.Interface(fn=chatbot, inputs="text", outputs="text",
17
- title="LIC Agent Assistant",
18
- description="Ask about LIC claims, policies, onboarding, etc.")
19
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import pandas as pd
3
  from sentence_transformers import SentenceTransformer, util
4
 
5
+ # Load FAQ data
6
  faq_df = pd.read_csv("lic_faq.csv")
7
  model = SentenceTransformer('all-MiniLM-L6-v2')
8
  faq_embeddings = model.encode(faq_df['question'].tolist(), convert_to_tensor=True)
 
10
  def chatbot(query):
11
  query_embedding = model.encode(query, convert_to_tensor=True)
12
  scores = util.pytorch_cos_sim(query_embedding, faq_embeddings)[0]
13
+ best_idx = int(scores.argmax()) # Fix: convert tensor to int
14
  return faq_df.iloc[best_idx]['answer']
15
 
16
+ # Custom theme and layout using Gradio Blocks
17
+ custom_theme = gr.themes.Base(
18
+ primary_hue="blue",
19
+ secondary_hue="gray",
20
+ font=["Inter", "sans-serif"],
21
+ radius_size=8,
22
+ spacing_size=4
23
+ )
24
+
25
+ with gr.Blocks(theme=custom_theme, title="LIC Agent Assistant") as demo:
26
+ gr.Markdown(
27
+ """
28
+ # 🧑‍💼 LIC Agent Assistant Chatbot
29
+ Welcome! Ask any question related to LIC policies, claims, commissions, onboarding, or KYC.
30
+ """
31
+ )
32
+
33
+ with gr.Row():
34
+ user_input = gr.Textbox(
35
+ lines=2,
36
+ placeholder="Ask your LIC agent question here...",
37
+ label="Your Question"
38
+ )
39
+ with gr.Row():
40
+ output = gr.Textbox(
41
+ label="Answer",
42
+ placeholder="Bot response will appear here...",
43
+ lines=5
44
+ )
45
+
46
+ submit_btn = gr.Button("Get Answer", variant="primary")
47
+ submit_btn.click(fn=chatbot, inputs=user_input, outputs=output)
48
+
49
+ demo.launch()