Update app.py
Browse files
app.py
CHANGED
|
@@ -2,19 +2,12 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
| 4 |
|
| 5 |
-
# Load FAQ
|
| 6 |
-
|
| 7 |
-
faq_df = pd.read_csv("lic_faq.csv", encoding="utf-8")
|
| 8 |
-
except UnicodeDecodeError:
|
| 9 |
-
faq_df = pd.read_csv("lic_faq.csv", encoding="ISO-8859-1")
|
| 10 |
-
|
| 11 |
-
# Initialize the SentenceTransformer model for semantic text similarity
|
| 12 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 13 |
-
|
| 14 |
-
# Convert FAQ questions into embeddings for similarity comparison
|
| 15 |
faq_embeddings = model.encode(faq_df['question'].tolist(), convert_to_tensor=True)
|
| 16 |
|
| 17 |
-
#
|
| 18 |
policy_suggestions = {
|
| 19 |
"term": "π‘ You might consider LIC Tech Term Plan for pure protection at low cost.",
|
| 20 |
"money back": "π‘ LIC Money Back Policy is great for periodic returns along with insurance.",
|
|
@@ -23,11 +16,10 @@ policy_suggestions = {
|
|
| 23 |
"pension": "π‘ LIC Jeevan Akshay and PM Vaya Vandana Yojana are best for pension seekers."
|
| 24 |
}
|
| 25 |
|
| 26 |
-
# Chatbot function to process user queries and generate responses
|
| 27 |
def chatbot(history, query):
|
| 28 |
query_lower = query.lower().strip()
|
| 29 |
|
| 30 |
-
# Handle
|
| 31 |
if query_lower in ["hi", "hello", "hey", "good morning", "good evening"]:
|
| 32 |
response = "π Hello! Iβm your LIC Assistant. Ask me anything about policies, claims, onboarding, or commission."
|
| 33 |
else:
|
|
@@ -41,230 +33,31 @@ def chatbot(history, query):
|
|
| 41 |
else:
|
| 42 |
response = faq_df.iloc[best_idx]['answer']
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
| 49 |
history.append((query, response))
|
| 50 |
return history, history
|
| 51 |
|
| 52 |
-
|
| 53 |
-
custom_css = """
|
| 54 |
-
/* General container styling */
|
| 55 |
-
.gradio-container {
|
| 56 |
-
font-family: 'Arial', sans-serif;
|
| 57 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 58 |
-
min-height: 100vh;
|
| 59 |
-
padding: 0;
|
| 60 |
-
margin: 0;
|
| 61 |
-
font-size: 14px;
|
| 62 |
-
}
|
| 63 |
-
|
| 64 |
-
/* Header styling */
|
| 65 |
-
h1 {
|
| 66 |
-
color: #2c3e50 !important;
|
| 67 |
-
font-size: 24px !important;
|
| 68 |
-
text-align: center;
|
| 69 |
-
margin: 15px 0;
|
| 70 |
-
text-shadow: none;
|
| 71 |
-
}
|
| 72 |
-
|
| 73 |
-
p {
|
| 74 |
-
color: #34495e !important;
|
| 75 |
-
font-size: 14px !important;
|
| 76 |
-
text-align: center;
|
| 77 |
-
margin-bottom: 15px;
|
| 78 |
-
}
|
| 79 |
-
|
| 80 |
-
/* Chatbot container */
|
| 81 |
-
.chatbot {
|
| 82 |
-
border-radius: 8px !important;
|
| 83 |
-
box-shadow: 0 2px 10px rgba(0,0,0,0.1) !important;
|
| 84 |
-
background: #ffffff !important;
|
| 85 |
-
padding: 10px !important;
|
| 86 |
-
max-width: 800px !important;
|
| 87 |
-
margin: 0 auto !important;
|
| 88 |
-
height: 70vh !important;
|
| 89 |
-
overflow-y: auto !important;
|
| 90 |
-
display: block;
|
| 91 |
-
box-sizing: border-box !important; /* Ensure consistent sizing */
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
-
/* Chat bubbles: Normal design without border */
|
| 95 |
-
.chatbot .bubble {
|
| 96 |
-
border: none !important; /* Explicitly remove border */
|
| 97 |
-
border-radius: 8px !important;
|
| 98 |
-
padding: 6px 10px !important; /* Reduced padding */
|
| 99 |
-
margin: 5px 0 !important;
|
| 100 |
-
max-width: 70% !important;
|
| 101 |
-
font-size: 14px !important;
|
| 102 |
-
min-height: 20px !important; /* Reduced minimum height */
|
| 103 |
-
min-width: 50px !important; /* Reduced minimum width */
|
| 104 |
-
word-wrap: break-word !important;
|
| 105 |
-
line-height: 1.4 !important;
|
| 106 |
-
color: #2c3e50 !important;
|
| 107 |
-
box-sizing: border-box !important; /* Include padding in size */
|
| 108 |
-
}
|
| 109 |
-
|
| 110 |
-
/* User bubble: Right-aligned, light blue */
|
| 111 |
-
.chatbot .bubble:nth-child(odd) {
|
| 112 |
-
background: #3498db !important;
|
| 113 |
-
color: #ffffff !important;
|
| 114 |
-
margin-left: auto !important;
|
| 115 |
-
align-self: flex-end !important;
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
/* Bot bubble: Left-aligned, light gray */
|
| 119 |
-
.chatbot .bubble:nth-child(even) {
|
| 120 |
-
background: #ecf0f1 !important;
|
| 121 |
-
margin-right: auto !important;
|
| 122 |
-
align-self: flex-start !important;
|
| 123 |
-
}
|
| 124 |
-
|
| 125 |
-
/* Input area */
|
| 126 |
-
.gradio-row:last-child {
|
| 127 |
-
width: 100% !important;
|
| 128 |
-
max-width: 800px !important;
|
| 129 |
-
margin: 10px auto !important;
|
| 130 |
-
padding: 10px !important;
|
| 131 |
-
display: flex !important;
|
| 132 |
-
align-items: center !important;
|
| 133 |
-
background: transparent !important;
|
| 134 |
-
box-sizing: border-box !important;
|
| 135 |
-
}
|
| 136 |
-
|
| 137 |
-
/* Textbox styling */
|
| 138 |
-
input[type="text"] {
|
| 139 |
-
border: 1px solid #bdc3c7 !important;
|
| 140 |
-
border-radius: 4px !important;
|
| 141 |
-
padding: 8px 12px !important;
|
| 142 |
-
font-size: 14px !important;
|
| 143 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.1) !important;
|
| 144 |
-
flex-grow: 1 !important;
|
| 145 |
-
margin-right: 10px !important;
|
| 146 |
-
color: #2c3e50 !important;
|
| 147 |
-
box-sizing: border-box !important;
|
| 148 |
-
}
|
| 149 |
-
|
| 150 |
-
input[type="text"]::placeholder {
|
| 151 |
-
color: #7f8c8d !important;
|
| 152 |
-
font-size: 14px !important;
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
input[type="text"]:focus {
|
| 156 |
-
border-color: #3498db !important;
|
| 157 |
-
outline: none !important;
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
/* Send button */
|
| 161 |
-
button {
|
| 162 |
-
border-radius: 4px !important;
|
| 163 |
-
background: #3498db !important;
|
| 164 |
-
color: white !important;
|
| 165 |
-
padding: 8px 20px !important;
|
| 166 |
-
font-size: 14px !important;
|
| 167 |
-
border: none !important;
|
| 168 |
-
min-width: 80px !important;
|
| 169 |
-
transition: background 0.3s ease !important;
|
| 170 |
-
text-align: center !important;
|
| 171 |
-
box-sizing: border-box !important;
|
| 172 |
-
}
|
| 173 |
-
|
| 174 |
-
button:hover {
|
| 175 |
-
background: #2980b9 !important;
|
| 176 |
-
}
|
| 177 |
-
|
| 178 |
-
/* Clear button */
|
| 179 |
-
button[aria-label="Clear Chat"] {
|
| 180 |
-
background: #bdc3c7 !important;
|
| 181 |
-
padding: 6px 15px !important;
|
| 182 |
-
font-size: 14px !important;
|
| 183 |
-
min-width: 90px !important;
|
| 184 |
-
margin-top: 10px !important;
|
| 185 |
-
align-self: center !important;
|
| 186 |
-
color: #ffffff !important;
|
| 187 |
-
box-sizing: border-box !important;
|
| 188 |
-
}
|
| 189 |
-
|
| 190 |
-
button[aria-label="Clear Chat"]:hover {
|
| 191 |
-
background: #95a5a6 !important;
|
| 192 |
-
}
|
| 193 |
-
|
| 194 |
-
/* Scrollbar styling */
|
| 195 |
-
.chatbot::-webkit-scrollbar {
|
| 196 |
-
width: 6px;
|
| 197 |
-
}
|
| 198 |
-
|
| 199 |
-
.chatbot::-webkit-scrollbar-track {
|
| 200 |
-
background: #f5f7fa;
|
| 201 |
-
}
|
| 202 |
-
|
| 203 |
-
.chatbot::-webkit-scrollbar-thumb {
|
| 204 |
-
background: #3498db;
|
| 205 |
-
border-radius: 3px;
|
| 206 |
-
}
|
| 207 |
-
|
| 208 |
-
.chatbot::-webkit-scrollbar-thumb:hover {
|
| 209 |
-
background: #2980b9;
|
| 210 |
-
}
|
| 211 |
-
|
| 212 |
-
/* Mobile-specific adjustments */
|
| 213 |
-
@media (max-width: 768px) {
|
| 214 |
-
.chatbot {
|
| 215 |
-
max-width: 100% !important;
|
| 216 |
-
height: 65vh !important;
|
| 217 |
-
margin: 0 !important;
|
| 218 |
-
}
|
| 219 |
-
.gradio-row:last-child {
|
| 220 |
-
max-width: 100% !important;
|
| 221 |
-
padding: 5px !important;
|
| 222 |
-
}
|
| 223 |
-
input[type="text"] {
|
| 224 |
-
padding: 6px 10px !important;
|
| 225 |
-
}
|
| 226 |
-
button {
|
| 227 |
-
padding: 6px 15px !important;
|
| 228 |
-
}
|
| 229 |
-
}
|
| 230 |
-
"""
|
| 231 |
-
|
| 232 |
-
with gr.Blocks(title="LIC Agent Chatbot", css=custom_css) as demo:
|
| 233 |
gr.Markdown(
|
| 234 |
-
"<h1>π§βπΌ LIC Agent Assistant</h1>"
|
| 235 |
-
"<p>Ask me anything about policies, claims, commissions, onboarding, and KYC.</p>"
|
| 236 |
)
|
| 237 |
|
| 238 |
-
chatbot_ui = gr.Chatbot(
|
| 239 |
-
label="LIC Assistant",
|
| 240 |
-
height=600,
|
| 241 |
-
bubble_full_width=False,
|
| 242 |
-
avatar_images=("π§", "π€"),
|
| 243 |
-
show_copy_button=True
|
| 244 |
-
)
|
| 245 |
|
| 246 |
with gr.Row():
|
| 247 |
-
msg = gr.Textbox(
|
| 248 |
-
placeholder="Type your question here...",
|
| 249 |
-
show_label=False,
|
| 250 |
-
scale=8,
|
| 251 |
-
elem_classes="chat-input"
|
| 252 |
-
)
|
| 253 |
send = gr.Button("Send", variant="primary", scale=2)
|
| 254 |
|
| 255 |
-
clear = gr.Button("Clear Chat"
|
| 256 |
|
| 257 |
state = gr.State([])
|
| 258 |
|
| 259 |
-
|
| 260 |
-
def send_message(history, query):
|
| 261 |
-
if query:
|
| 262 |
-
history, _ = chatbot(history, query)
|
| 263 |
-
return history, ""
|
| 264 |
-
return history, query
|
| 265 |
-
|
| 266 |
-
send.click(fn=send_message, inputs=[state, msg], outputs=[chatbot_ui, msg])
|
| 267 |
-
msg.submit(fn=send_message, inputs=[state, msg], outputs=[chatbot_ui, msg])
|
| 268 |
clear.click(lambda: ([], []), None, [chatbot_ui, state], queue=False)
|
| 269 |
|
| 270 |
-
demo.launch()
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
| 4 |
|
| 5 |
+
# Load FAQ
|
| 6 |
+
faq_df = pd.read_csv("lic_faq.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
|
|
|
| 8 |
faq_embeddings = model.encode(faq_df['question'].tolist(), convert_to_tensor=True)
|
| 9 |
|
| 10 |
+
# Policy recommendations
|
| 11 |
policy_suggestions = {
|
| 12 |
"term": "π‘ You might consider LIC Tech Term Plan for pure protection at low cost.",
|
| 13 |
"money back": "π‘ LIC Money Back Policy is great for periodic returns along with insurance.",
|
|
|
|
| 16 |
"pension": "π‘ LIC Jeevan Akshay and PM Vaya Vandana Yojana are best for pension seekers."
|
| 17 |
}
|
| 18 |
|
|
|
|
| 19 |
def chatbot(history, query):
|
| 20 |
query_lower = query.lower().strip()
|
| 21 |
|
| 22 |
+
# Handle greetings
|
| 23 |
if query_lower in ["hi", "hello", "hey", "good morning", "good evening"]:
|
| 24 |
response = "π Hello! Iβm your LIC Assistant. Ask me anything about policies, claims, onboarding, or commission."
|
| 25 |
else:
|
|
|
|
| 33 |
else:
|
| 34 |
response = faq_df.iloc[best_idx]['answer']
|
| 35 |
|
| 36 |
+
for keyword, suggestion in policy_suggestions.items():
|
| 37 |
+
if keyword in query_lower:
|
| 38 |
+
response += f"\n\n{suggestion}"
|
| 39 |
+
break
|
| 40 |
|
| 41 |
history.append((query, response))
|
| 42 |
return history, history
|
| 43 |
|
| 44 |
+
with gr.Blocks(title="LIC Agent Chatbot") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
gr.Markdown(
|
| 46 |
+
"<h1 style='text-align:center;color:#0D47A1;'>π§βπΌ LIC Agent Assistant</h1>"
|
| 47 |
+
"<p style='text-align:center;'>Ask me anything about policies, claims, commissions, onboarding, and KYC.</p>"
|
| 48 |
)
|
| 49 |
|
| 50 |
+
chatbot_ui = gr.Chatbot(label="LIC Assistant", height=450, bubble_full_width=False, avatar_images=("π§", "π€"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
with gr.Row():
|
| 53 |
+
msg = gr.Textbox(placeholder="Ask your question here...", show_label=False, scale=8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
send = gr.Button("Send", variant="primary", scale=2)
|
| 55 |
|
| 56 |
+
clear = gr.Button("Clear Chat")
|
| 57 |
|
| 58 |
state = gr.State([])
|
| 59 |
|
| 60 |
+
send.click(fn=chatbot, inputs=[state, msg], outputs=[chatbot_ui, state])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
clear.click(lambda: ([], []), None, [chatbot_ui, state], queue=False)
|
| 62 |
|
| 63 |
+
demo.launch()
|