Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
-
import folium
|
3 |
-
from folium.plugins import HeatMap
|
4 |
from modules.simulator import simulate_data
|
5 |
from modules.filters import apply_filters
|
6 |
-
from modules.visuals import display_dashboard,
|
|
|
7 |
|
8 |
-
|
9 |
-
st.
|
10 |
-
st.title("π‘ Vedavathi Smart Pole Monitoring - Heatmap Dashboard")
|
11 |
|
12 |
-
# Sidebar - Controls for simulation
|
13 |
st.sidebar.header("π οΈ Simulation Controls")
|
14 |
num_poles = st.sidebar.slider("Number of Poles", min_value=5, max_value=50, value=10)
|
15 |
simulate_faults = st.sidebar.checkbox("Simulate Random Faults", value=True)
|
16 |
|
17 |
-
# Simulate data
|
18 |
df = simulate_data(num_poles, simulate_faults)
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
21 |
st.sidebar.header("π Filter Data")
|
22 |
alert_filter = st.sidebar.multiselect("Alert Level", ["Green", "Yellow", "Red"], default=["Green", "Yellow", "Red"])
|
23 |
-
|
24 |
-
|
25 |
-
# Apply filters on the simulated data
|
26 |
-
filtered_df = apply_filters(df, alert_filter, cam_filter)
|
27 |
|
28 |
-
#
|
29 |
-
display_dashboard(
|
30 |
-
|
31 |
-
# Display the Heatmap
|
32 |
-
st.subheader("π Pole Locations Heatmap")
|
33 |
display_heatmap(filtered_df)
|
34 |
|
35 |
-
# Display Pole Monitoring Table
|
36 |
st.subheader("π Pole Monitoring Table")
|
37 |
st.dataframe(filtered_df, use_container_width=True)
|
38 |
-
|
39 |
-
# Display charts for data
|
40 |
-
display_charts(df)
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from modules.simulator import simulate_data
|
3 |
from modules.filters import apply_filters
|
4 |
+
from modules.visuals import display_dashboard, display_heatmap
|
5 |
+
from modules.ai_engine import AIEngine
|
6 |
|
7 |
+
st.set_page_config(page_title="Pole Monitoring Dashboard", layout="wide")
|
8 |
+
st.title("π‘ Pole Monitoring - Real-Time Simulation")
|
|
|
9 |
|
|
|
10 |
st.sidebar.header("π οΈ Simulation Controls")
|
11 |
num_poles = st.sidebar.slider("Number of Poles", min_value=5, max_value=50, value=10)
|
12 |
simulate_faults = st.sidebar.checkbox("Simulate Random Faults", value=True)
|
13 |
|
14 |
+
# Simulate pole data
|
15 |
df = simulate_data(num_poles, simulate_faults)
|
16 |
|
17 |
+
# AI predictions (optional)
|
18 |
+
ai_engine = AIEngine()
|
19 |
+
df = ai_engine.predict_health(df)
|
20 |
+
|
21 |
st.sidebar.header("π Filter Data")
|
22 |
alert_filter = st.sidebar.multiselect("Alert Level", ["Green", "Yellow", "Red"], default=["Green", "Yellow", "Red"])
|
23 |
+
filtered_df = apply_filters(df, alert_filter)
|
|
|
|
|
|
|
24 |
|
25 |
+
# Dashboard and Heatmap Display
|
26 |
+
display_dashboard(filtered_df)
|
|
|
|
|
|
|
27 |
display_heatmap(filtered_df)
|
28 |
|
|
|
29 |
st.subheader("π Pole Monitoring Table")
|
30 |
st.dataframe(filtered_df, use_container_width=True)
|
|
|
|
|
|