Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -6,10 +6,8 @@ ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
|
6 |
|
7 |
def extract_kyc_fields(file_path, force_type=None):
|
8 |
try:
|
9 |
-
# OCR text extraction
|
10 |
result = ocr.ocr(file_path, cls=True)
|
11 |
|
12 |
-
# Clean up lines
|
13 |
lines = []
|
14 |
for block in result:
|
15 |
for line in block:
|
@@ -19,7 +17,6 @@ def extract_kyc_fields(file_path, force_type=None):
|
|
19 |
|
20 |
full_text = "\n".join(lines)
|
21 |
|
22 |
-
# Detect card type (if not forced)
|
23 |
if force_type:
|
24 |
card_type = force_type.upper()
|
25 |
else:
|
@@ -33,90 +30,30 @@ def extract_kyc_fields(file_path, force_type=None):
|
|
33 |
|
34 |
response = {"card_type": card_type}
|
35 |
|
36 |
-
# ===================== PAN CARD =====================
|
37 |
if card_type == "PAN":
|
38 |
pan_match = re.search(r'\b[A-Z]{5}[0-9]{4}[A-Z]\b', full_text)
|
39 |
if pan_match:
|
40 |
response["pan_number"] = pan_match.group(0)
|
|
|
|
|
41 |
|
42 |
-
# DOB extraction
|
43 |
-
dob = extract_dob(lines)
|
44 |
-
response["dob"] = dob
|
45 |
-
|
46 |
-
# Name detection
|
47 |
-
name = "Not found"
|
48 |
-
for i in range(len(lines)):
|
49 |
-
if "INCOME TAX DEPARTMENT" in lines[i].upper():
|
50 |
-
for j in range(i + 1, len(lines)):
|
51 |
-
possible = lines[j].strip()
|
52 |
-
if (
|
53 |
-
re.match(r'^[A-Z\s.]+$', possible)
|
54 |
-
and not any(x in possible for x in ["INDIA", "GOVT", "DEPARTMENT"])
|
55 |
-
and not re.search(r'\d', possible)
|
56 |
-
):
|
57 |
-
name = possible.strip()
|
58 |
-
break
|
59 |
-
break
|
60 |
-
response["name"] = name
|
61 |
-
|
62 |
-
# ===================== AADHAAR CARD =====================
|
63 |
elif card_type == "AADHAAR":
|
64 |
aadhaar_match = re.search(r'\b\d{4}[\s\-]?\d{4}[\s\-]?\d{4}\b', full_text)
|
65 |
if aadhaar_match:
|
66 |
response["aadhaar_number"] = aadhaar_match.group(0)
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
response["dob"] = dob
|
71 |
-
|
72 |
-
# Gender detection
|
73 |
-
gender = "Not found"
|
74 |
-
for line in lines:
|
75 |
-
if "MALE" in line.upper():
|
76 |
-
gender = "MALE"
|
77 |
-
break
|
78 |
-
elif "FEMALE" in line.upper():
|
79 |
-
gender = "FEMALE"
|
80 |
-
break
|
81 |
-
elif "TRANSGENDER" in line.upper():
|
82 |
-
gender = "TRANSGENDER"
|
83 |
-
break
|
84 |
-
response["gender"] = gender
|
85 |
-
|
86 |
-
# Name detection: before DOB
|
87 |
-
name = "Not found"
|
88 |
-
for i, line in enumerate(lines):
|
89 |
-
if re.search(r'\d{2}[./-]\d{2}[./-]\d{4}', line) and i > 0:
|
90 |
-
possible_name = lines[i - 1].strip()
|
91 |
-
if (
|
92 |
-
not re.search(r'\d', possible_name)
|
93 |
-
and len(possible_name.split()) >= 2
|
94 |
-
and not any(x in possible_name.upper() for x in ["DOB", "INDIA", "MALE", "FEMALE", "GOVERNMENT"])
|
95 |
-
):
|
96 |
-
name = possible_name
|
97 |
-
break
|
98 |
-
if name == "Not found":
|
99 |
-
for line in lines:
|
100 |
-
if (
|
101 |
-
not re.search(r'\d', line)
|
102 |
-
and len(line.split()) >= 2
|
103 |
-
and not any(x in line.upper() for x in ["DOB", "INDIA", "MALE", "FEMALE", "GOVERNMENT"])
|
104 |
-
):
|
105 |
-
name = line.strip()
|
106 |
-
break
|
107 |
-
response["name"] = name
|
108 |
|
109 |
else:
|
110 |
response["error"] = "Could not identify document as PAN or Aadhaar."
|
111 |
|
112 |
return response
|
113 |
-
|
114 |
except Exception as e:
|
115 |
return {"error": f"OCR processing failed: {str(e)}"}
|
116 |
|
117 |
|
118 |
def extract_dob(lines):
|
119 |
-
"""Extract DOB from OCR lines in multiple formats."""
|
120 |
dob = "Not found"
|
121 |
for line in lines:
|
122 |
match = re.search(r'\b\d{2}[./-]\d{2}[./-]\d{4}\b', line)
|
@@ -131,3 +68,48 @@ def extract_dob(lines):
|
|
131 |
if match and any(label in line.upper() for label in ["YOB", "YEAR", "BIRTH"]):
|
132 |
return match.group(0)
|
133 |
return dob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def extract_kyc_fields(file_path, force_type=None):
|
8 |
try:
|
|
|
9 |
result = ocr.ocr(file_path, cls=True)
|
10 |
|
|
|
11 |
lines = []
|
12 |
for block in result:
|
13 |
for line in block:
|
|
|
17 |
|
18 |
full_text = "\n".join(lines)
|
19 |
|
|
|
20 |
if force_type:
|
21 |
card_type = force_type.upper()
|
22 |
else:
|
|
|
30 |
|
31 |
response = {"card_type": card_type}
|
32 |
|
|
|
33 |
if card_type == "PAN":
|
34 |
pan_match = re.search(r'\b[A-Z]{5}[0-9]{4}[A-Z]\b', full_text)
|
35 |
if pan_match:
|
36 |
response["pan_number"] = pan_match.group(0)
|
37 |
+
response["dob"] = extract_dob(lines)
|
38 |
+
response["name"] = extract_pan_name(lines)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
elif card_type == "AADHAAR":
|
41 |
aadhaar_match = re.search(r'\b\d{4}[\s\-]?\d{4}[\s\-]?\d{4}\b', full_text)
|
42 |
if aadhaar_match:
|
43 |
response["aadhaar_number"] = aadhaar_match.group(0)
|
44 |
+
response["dob"] = extract_dob(lines)
|
45 |
+
response["gender"] = extract_gender(lines)
|
46 |
+
response["name"] = extract_aadhaar_name(lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
else:
|
49 |
response["error"] = "Could not identify document as PAN or Aadhaar."
|
50 |
|
51 |
return response
|
|
|
52 |
except Exception as e:
|
53 |
return {"error": f"OCR processing failed: {str(e)}"}
|
54 |
|
55 |
|
56 |
def extract_dob(lines):
|
|
|
57 |
dob = "Not found"
|
58 |
for line in lines:
|
59 |
match = re.search(r'\b\d{2}[./-]\d{2}[./-]\d{4}\b', line)
|
|
|
68 |
if match and any(label in line.upper() for label in ["YOB", "YEAR", "BIRTH"]):
|
69 |
return match.group(0)
|
70 |
return dob
|
71 |
+
|
72 |
+
|
73 |
+
def extract_gender(lines):
|
74 |
+
for line in lines:
|
75 |
+
if "MALE" in line.upper():
|
76 |
+
return "MALE"
|
77 |
+
elif "FEMALE" in line.upper():
|
78 |
+
return "FEMALE"
|
79 |
+
elif "TRANSGENDER" in line.upper():
|
80 |
+
return "TRANSGENDER"
|
81 |
+
return "Not found"
|
82 |
+
|
83 |
+
|
84 |
+
def extract_pan_name(lines):
|
85 |
+
for i in range(len(lines)):
|
86 |
+
if "INCOME TAX DEPARTMENT" in lines[i].upper():
|
87 |
+
for j in range(i + 1, len(lines)):
|
88 |
+
possible = lines[j].strip()
|
89 |
+
if (
|
90 |
+
re.match(r'^[A-Z\s.]+$', possible)
|
91 |
+
and not any(x in possible for x in ["INDIA", "GOVT", "DEPARTMENT"])
|
92 |
+
and not re.search(r'\d', possible)
|
93 |
+
):
|
94 |
+
return possible.strip()
|
95 |
+
return "Not found"
|
96 |
+
|
97 |
+
|
98 |
+
def extract_aadhaar_name(lines):
|
99 |
+
for i, line in enumerate(lines):
|
100 |
+
if re.search(r'\d{2}[./-]\d{2}[./-]\d{4}', line) and i > 0:
|
101 |
+
possible_name = lines[i - 1].strip()
|
102 |
+
if (
|
103 |
+
not re.search(r'\d', possible_name)
|
104 |
+
and len(possible_name.split()) >= 2
|
105 |
+
and not any(x in possible_name.upper() for x in ["DOB", "INDIA", "MALE", "FEMALE", "GOVERNMENT"])
|
106 |
+
):
|
107 |
+
return possible_name
|
108 |
+
for line in lines:
|
109 |
+
if (
|
110 |
+
not re.search(r'\d', line)
|
111 |
+
and len(line.split()) >= 2
|
112 |
+
and not any(x in line.upper() for x in ["DOB", "INDIA", "MALE", "FEMALE", "GOVERNMENT"])
|
113 |
+
):
|
114 |
+
return line.strip()
|
115 |
+
return "Not found"
|