Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,39 +1,68 @@
|
|
1 |
from paddleocr import PaddleOCR
|
2 |
import re
|
3 |
|
4 |
-
# Initialize OCR
|
5 |
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
6 |
|
7 |
def extract_kyc_fields(file_path):
|
8 |
try:
|
9 |
result = ocr.ocr(file_path, cls=True)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
for line in
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
break
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
return {
|
33 |
-
"aadhaar_number":
|
34 |
-
"dob":
|
|
|
35 |
"name": name
|
36 |
}
|
37 |
|
38 |
except Exception as e:
|
39 |
-
return {"error": f"
|
|
|
1 |
from paddleocr import PaddleOCR
|
2 |
import re
|
3 |
|
4 |
+
# Initialize OCR with English and Tamil (or just 'en' if you want)
|
5 |
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
6 |
|
7 |
def extract_kyc_fields(file_path):
|
8 |
try:
|
9 |
result = ocr.ocr(file_path, cls=True)
|
10 |
|
11 |
+
lines = []
|
12 |
+
for block in result:
|
13 |
+
for line in block:
|
14 |
+
text = line[1][0].strip()
|
15 |
+
if text:
|
16 |
+
lines.append(text)
|
17 |
|
18 |
+
# Combine all lines into one big string
|
19 |
+
full_text = "\n".join(lines)
|
20 |
|
21 |
+
# Aadhaar Number – strictly 12 digits (grouped or not)
|
22 |
+
aadhaar = next((line for line in lines if re.search(r'\b\d{4}[\s\-]?\d{4}[\s\-]?\d{4}\b', line)), "Not found")
|
23 |
|
24 |
+
# DOB – with or without label
|
25 |
+
dob = "Not found"
|
26 |
+
for line in lines:
|
27 |
+
match = re.search(r'\d{2}[/-]\d{2}[/-]\d{4}', line)
|
28 |
+
if match:
|
29 |
+
dob = match.group(0)
|
30 |
+
break
|
31 |
+
|
32 |
+
# Gender – look for common gender keywords
|
33 |
+
gender = "Not found"
|
34 |
+
for line in lines:
|
35 |
+
if "MALE" in line.upper():
|
36 |
+
gender = "MALE"
|
37 |
+
break
|
38 |
+
elif "FEMALE" in line.upper():
|
39 |
+
gender = "FEMALE"
|
40 |
break
|
41 |
+
elif "TRANSGENDER" in line.upper():
|
42 |
+
gender = "TRANSGENDER"
|
43 |
+
break
|
44 |
+
|
45 |
+
# Name – find most probable name line (usually near DOB)
|
46 |
+
name = "Not found"
|
47 |
+
for i, line in enumerate(lines):
|
48 |
+
# Assume name is just above DOB or gender
|
49 |
+
if "DOB" in line.upper() or "MALE" in line.upper() or "FEMALE" in line.upper():
|
50 |
+
if i > 0:
|
51 |
+
possible_name = lines[i - 1]
|
52 |
+
# Filter to avoid accidental text
|
53 |
+
if (
|
54 |
+
not any(x in possible_name.upper() for x in ["GOVERNMENT", "DOB", "MALE", "FEMALE", "YEAR"])
|
55 |
+
and not re.search(r'\d', possible_name)
|
56 |
+
):
|
57 |
+
name = possible_name.strip()
|
58 |
+
break
|
59 |
|
60 |
return {
|
61 |
+
"aadhaar_number": aadhaar,
|
62 |
+
"dob": dob,
|
63 |
+
"gender": gender,
|
64 |
"name": name
|
65 |
}
|
66 |
|
67 |
except Exception as e:
|
68 |
+
return {"error": f"OCR processing failed: {str(e)}"}
|