Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
from paddleocr import PaddleOCR
|
2 |
import re
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
def extract_kyc_fields(file_path):
|
7 |
try:
|
@@ -16,23 +17,23 @@ def extract_kyc_fields(file_path):
|
|
16 |
|
17 |
full_text = "\n".join(lines)
|
18 |
|
19 |
-
# PAN
|
20 |
pan_match = re.search(r'\b[A-Z]{5}[0-9]{4}[A-Z]\b', full_text)
|
21 |
aadhaar_match = re.search(r'\b\d{4}[\s\-]?\d{4}[\s\-]?\d{4}\b', full_text)
|
22 |
|
|
|
23 |
if pan_match:
|
24 |
card_type = "PAN"
|
25 |
elif aadhaar_match:
|
26 |
card_type = "AADHAAR"
|
27 |
-
else:
|
28 |
-
card_type = "UNKNOWN"
|
29 |
|
30 |
response = {"card_type": card_type}
|
31 |
|
|
|
32 |
if card_type == "PAN":
|
33 |
response["pan_number"] = pan_match.group(0)
|
34 |
|
35 |
-
# Extract DOB
|
36 |
dob = "Not found"
|
37 |
for line in lines:
|
38 |
match = re.search(r'\d{2}[/-]\d{2}[/-]\d{4}', line)
|
@@ -41,22 +42,23 @@ def extract_kyc_fields(file_path):
|
|
41 |
break
|
42 |
response["dob"] = dob
|
43 |
|
44 |
-
#
|
45 |
name = "Not found"
|
46 |
for i in range(len(lines)):
|
47 |
if "INCOME TAX DEPARTMENT" in lines[i].upper():
|
48 |
for j in range(i+1, len(lines)):
|
49 |
possible = lines[j].strip()
|
50 |
if (
|
51 |
-
re.match(r'^[A-Z\s.]+$', possible)
|
52 |
-
not any(x in possible for x in ["INDIA", "DEPARTMENT", "GOVT"])
|
53 |
-
not re.search(r'\d', possible)
|
54 |
):
|
55 |
name = possible.strip()
|
56 |
break
|
57 |
break
|
58 |
response["name"] = name
|
59 |
|
|
|
60 |
elif card_type == "AADHAAR":
|
61 |
response["aadhaar_number"] = aadhaar_match.group(0)
|
62 |
|
@@ -69,7 +71,7 @@ def extract_kyc_fields(file_path):
|
|
69 |
break
|
70 |
response["dob"] = dob
|
71 |
|
72 |
-
# Gender
|
73 |
gender = "Not found"
|
74 |
for line in lines:
|
75 |
if "MALE" in line.upper():
|
@@ -78,24 +80,41 @@ def extract_kyc_fields(file_path):
|
|
78 |
elif "FEMALE" in line.upper():
|
79 |
gender = "FEMALE"
|
80 |
break
|
|
|
|
|
|
|
81 |
response["gender"] = gender
|
82 |
|
83 |
-
#
|
84 |
name = "Not found"
|
|
|
85 |
for i, line in enumerate(lines):
|
86 |
-
if
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
response["name"] = name
|
96 |
|
97 |
else:
|
98 |
-
response["error"] = "Unable to determine document type."
|
99 |
|
100 |
return response
|
101 |
|
|
|
1 |
from paddleocr import PaddleOCR
|
2 |
import re
|
3 |
|
4 |
+
# Enable multilingual support (English + Hindi + Tamil)
|
5 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en|hi|ta')
|
6 |
|
7 |
def extract_kyc_fields(file_path):
|
8 |
try:
|
|
|
17 |
|
18 |
full_text = "\n".join(lines)
|
19 |
|
20 |
+
# PAN pattern: 5 letters + 4 digits + 1 letter
|
21 |
pan_match = re.search(r'\b[A-Z]{5}[0-9]{4}[A-Z]\b', full_text)
|
22 |
aadhaar_match = re.search(r'\b\d{4}[\s\-]?\d{4}[\s\-]?\d{4}\b', full_text)
|
23 |
|
24 |
+
card_type = "UNKNOWN"
|
25 |
if pan_match:
|
26 |
card_type = "PAN"
|
27 |
elif aadhaar_match:
|
28 |
card_type = "AADHAAR"
|
|
|
|
|
29 |
|
30 |
response = {"card_type": card_type}
|
31 |
|
32 |
+
# --------- PAN CARD LOGIC ---------
|
33 |
if card_type == "PAN":
|
34 |
response["pan_number"] = pan_match.group(0)
|
35 |
|
36 |
+
# Extract DOB
|
37 |
dob = "Not found"
|
38 |
for line in lines:
|
39 |
match = re.search(r'\d{2}[/-]\d{2}[/-]\d{4}', line)
|
|
|
42 |
break
|
43 |
response["dob"] = dob
|
44 |
|
45 |
+
# Extract Name
|
46 |
name = "Not found"
|
47 |
for i in range(len(lines)):
|
48 |
if "INCOME TAX DEPARTMENT" in lines[i].upper():
|
49 |
for j in range(i+1, len(lines)):
|
50 |
possible = lines[j].strip()
|
51 |
if (
|
52 |
+
re.match(r'^[A-Z\s.]+$', possible)
|
53 |
+
and not any(x in possible for x in ["INDIA", "DEPARTMENT", "GOVT"])
|
54 |
+
and not re.search(r'\d', possible)
|
55 |
):
|
56 |
name = possible.strip()
|
57 |
break
|
58 |
break
|
59 |
response["name"] = name
|
60 |
|
61 |
+
# --------- AADHAAR CARD LOGIC ---------
|
62 |
elif card_type == "AADHAAR":
|
63 |
response["aadhaar_number"] = aadhaar_match.group(0)
|
64 |
|
|
|
71 |
break
|
72 |
response["dob"] = dob
|
73 |
|
74 |
+
# Extract Gender
|
75 |
gender = "Not found"
|
76 |
for line in lines:
|
77 |
if "MALE" in line.upper():
|
|
|
80 |
elif "FEMALE" in line.upper():
|
81 |
gender = "FEMALE"
|
82 |
break
|
83 |
+
elif "TRANSGENDER" in line.upper():
|
84 |
+
gender = "TRANSGENDER"
|
85 |
+
break
|
86 |
response["gender"] = gender
|
87 |
|
88 |
+
# Robust name extraction
|
89 |
name = "Not found"
|
90 |
+
# First attempt: line before DOB
|
91 |
for i, line in enumerate(lines):
|
92 |
+
if re.search(r'\d{2}[/-]\d{2}[/-]\d{4}', line) and i > 0:
|
93 |
+
possible_name = lines[i - 1].strip()
|
94 |
+
if (
|
95 |
+
not any(x in possible_name.upper() for x in ["GOVERNMENT", "INDIA", "DOB", "MALE", "FEMALE"])
|
96 |
+
and not re.search(r'\d', possible_name)
|
97 |
+
and len(possible_name.split()) >= 2
|
98 |
+
):
|
99 |
+
name = possible_name
|
100 |
+
break
|
101 |
+
|
102 |
+
# Fallback: best guess line with title-cased text and no digits
|
103 |
+
if name == "Not found":
|
104 |
+
for line in lines:
|
105 |
+
if (
|
106 |
+
not re.search(r'\d', line)
|
107 |
+
and len(line.split()) >= 2
|
108 |
+
and line[0].isupper()
|
109 |
+
and not any(x in line.upper() for x in ["GOVERNMENT", "INDIA", "DOB", "MALE", "FEMALE"])
|
110 |
+
):
|
111 |
+
name = line.strip()
|
112 |
+
break
|
113 |
+
|
114 |
response["name"] = name
|
115 |
|
116 |
else:
|
117 |
+
response["error"] = "Unable to determine document type (PAN/Aadhaar)."
|
118 |
|
119 |
return response
|
120 |
|