Kushalmanda commited on
Commit
59ec4bf
·
verified ·
1 Parent(s): 11f9286

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -21
app.py CHANGED
@@ -2,30 +2,14 @@ import torch
2
  import gradio as gr
3
  from PIL import Image
4
 
5
- # Debugging print statements
6
- print("Loading YOLOv5 model...")
7
-
8
- try:
9
- # Load YOLOv5 model (adjust based on the model you uploaded)
10
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 'yolov5s' is the small model, change if needed
11
- print("Model loaded successfully!")
12
-
13
- except Exception as e:
14
- print(f"Error loading model: {e}")
15
- raise
16
 
17
  # Define the function for image inference
18
  def predict_image(image):
19
- try:
20
- print("Running inference on the uploaded image...")
21
- results = model(image) # Run inference on the input image
22
- print("Inference completed!")
23
- results.show() # Optional: Visualize the results (bounding boxes)
24
- return results.pandas().xywh # Return the results (bounding box coordinates)
25
-
26
- except Exception as e:
27
- print(f"Error during inference: {e}")
28
- return str(e)
29
 
30
  # Set up Gradio interface to allow image uploads and get predictions
31
  interface = gr.Interface(fn=predict_image, inputs=gr.Image(), outputs=gr.Dataframe())
 
2
  import gradio as gr
3
  from PIL import Image
4
 
5
+ # Load the YOLOv5 model from the uploaded file (e.g., 'yolov5s.pt')
6
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5s.pt') # Adjust the file name if needed
 
 
 
 
 
 
 
 
 
7
 
8
  # Define the function for image inference
9
  def predict_image(image):
10
+ results = model(image) # Run inference on the input image
11
+ results.show() # Optionally visualize the results (bounding boxes)
12
+ return results.pandas().xywh # Return the results (bounding box coordinates)
 
 
 
 
 
 
 
13
 
14
  # Set up Gradio interface to allow image uploads and get predictions
15
  interface = gr.Interface(fn=predict_image, inputs=gr.Image(), outputs=gr.Dataframe())