Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection
|
3 |
-
from PIL import Image
|
4 |
import gradio as gr
|
|
|
|
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
# Load the pre-trained DETR model and feature extractor
|
8 |
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
9 |
extractor = AutoFeatureExtractor.from_pretrained("facebook/detr-resnet-50")
|
10 |
|
11 |
# Simplified COCO label mapping (DETR uses COCO dataset)
|
12 |
-
# In a real scenario, you'd need a custom model trained for construction labels
|
13 |
COCO_LABELS = {56: "wall", 60: "foundation"} # Pretending chair (56) is "wall", dining table (60) is "foundation"
|
14 |
|
15 |
# Function to calculate materials based on detected areas
|
@@ -39,13 +39,20 @@ def calculate_materials(detected_objects, image_width, image_height):
|
|
39 |
|
40 |
return materials
|
41 |
|
42 |
-
#
|
43 |
-
def
|
44 |
-
# Convert
|
45 |
-
|
46 |
-
image = Image.fromarray(image)
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
inputs = extractor(images=image, return_tensors="pt")
|
50 |
|
51 |
# Run inference with DETR
|
@@ -59,7 +66,6 @@ def predict_image(image):
|
|
59 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
60 |
box = box.tolist()
|
61 |
label_id = label.item()
|
62 |
-
# Map the label to a construction-related name (simplified for demo)
|
63 |
label_name = COCO_LABELS.get(label_id, "unknown")
|
64 |
if label_name != "unknown": # Only process relevant objects
|
65 |
detected_objects.append({
|
@@ -83,12 +89,12 @@ def predict_image(image):
|
|
83 |
# Set up Gradio interface
|
84 |
interface = gr.Interface(
|
85 |
fn=predict_image,
|
86 |
-
inputs=gr.
|
87 |
outputs=gr.JSON(label="Material Estimates"),
|
88 |
title="Blueprint Material Estimator",
|
89 |
-
description="Upload a blueprint image to estimate construction materials."
|
90 |
)
|
91 |
|
92 |
# Launch the interface
|
93 |
if __name__ == "__main__":
|
94 |
-
interface.launch(share=False)
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
from pdf2image import convert_from_path
|
5 |
import numpy as np
|
6 |
+
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection
|
7 |
|
8 |
# Load the pre-trained DETR model and feature extractor
|
9 |
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
10 |
extractor = AutoFeatureExtractor.from_pretrained("facebook/detr-resnet-50")
|
11 |
|
12 |
# Simplified COCO label mapping (DETR uses COCO dataset)
|
|
|
13 |
COCO_LABELS = {56: "wall", 60: "foundation"} # Pretending chair (56) is "wall", dining table (60) is "foundation"
|
14 |
|
15 |
# Function to calculate materials based on detected areas
|
|
|
39 |
|
40 |
return materials
|
41 |
|
42 |
+
# Function to process PDFs and convert to images
|
43 |
+
def pdf_to_image(pdf_file):
|
44 |
+
images = convert_from_path(pdf_file, first_page=1, last_page=1) # Convert the first page of the PDF
|
45 |
+
return images[0] # Return the first page as an image
|
|
|
46 |
|
47 |
+
# Define the function for image inference
|
48 |
+
def predict_image(file):
|
49 |
+
# Check if the input file is a PDF or image
|
50 |
+
if isinstance(file, str) and file.endswith('.pdf'):
|
51 |
+
image = pdf_to_image(file) # Convert PDF to image
|
52 |
+
else:
|
53 |
+
image = Image.open(file) # Open the image file
|
54 |
+
|
55 |
+
# Convert the image to the correct format for the model
|
56 |
inputs = extractor(images=image, return_tensors="pt")
|
57 |
|
58 |
# Run inference with DETR
|
|
|
66 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
67 |
box = box.tolist()
|
68 |
label_id = label.item()
|
|
|
69 |
label_name = COCO_LABELS.get(label_id, "unknown")
|
70 |
if label_name != "unknown": # Only process relevant objects
|
71 |
detected_objects.append({
|
|
|
89 |
# Set up Gradio interface
|
90 |
interface = gr.Interface(
|
91 |
fn=predict_image,
|
92 |
+
inputs=gr.File(label="Upload Blueprint (PDF or Image)"),
|
93 |
outputs=gr.JSON(label="Material Estimates"),
|
94 |
title="Blueprint Material Estimator",
|
95 |
+
description="Upload a blueprint image or PDF to estimate construction materials."
|
96 |
)
|
97 |
|
98 |
# Launch the interface
|
99 |
if __name__ == "__main__":
|
100 |
+
interface.launch(share=False)
|