dschandra commited on
Commit
de8ea7d
·
verified ·
1 Parent(s): 7bfb5f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +192 -62
app.py CHANGED
@@ -1,10 +1,41 @@
1
  import cv2
2
  import numpy as np
3
- from PIL import Image
4
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  # Function to calculate materials based on blueprint dimensions
7
  def calculate_materials_from_dimensions(wall_area, foundation_area):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  materials = {
9
  "cement": 0,
10
  "bricks": 0,
@@ -15,83 +46,182 @@ def calculate_materials_from_dimensions(wall_area, foundation_area):
15
  if wall_area > 0:
16
  materials['cement'] += wall_area * 10 # 10 kg cement per m² for walls
17
  materials['bricks'] += wall_area * 500 # 500 bricks per m² for walls
18
- materials['steel'] += wall_area * 2 # 2 kg steel per m² for walls
 
 
19
 
20
  # Foundation calculations (in m²)
21
  if foundation_area > 0:
22
  materials['cement'] += foundation_area * 20 # 20 kg cement per m² for foundation
23
  materials['bricks'] += foundation_area * 750 # 750 bricks per m² for foundation
24
- materials['steel'] += foundation_area * 5 # 5 kg steel per m² for foundation
 
 
25
 
 
26
  return materials
27
 
28
- # Function to process the blueprint and extract dimensions
29
- def process_blueprint(image_path):
30
- # Open the image
31
- image = cv2.imread(image_path)
32
- if image is None:
33
- raise ValueError("Could not load the image")
34
-
35
- # Convert to grayscale for easier processing
36
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
37
-
38
- # Apply edge detection to find lines (walls)
39
- edges = cv2.Canny(gray, 50, 150, apertureSize=3)
40
-
41
- # Use Hough Transform to detect lines (walls)
42
- lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
43
-
44
- # Calculate total wall length (in pixels)
45
- total_wall_length_pixels = 0
46
- if lines is not None:
47
- for line in lines:
48
- x1, y1, x2, y2 = line[0]
49
- length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
50
- total_wall_length_pixels += length
51
-
52
- # From the blueprint, we know the dimensions (27 m × 9.78 m)
53
- # We also need to estimate the pixel-to-meter scale
54
- image_height, image_width = image.shape[:2]
55
- blueprint_width_m = 27 # From the blueprint (27 m)
56
- blueprint_height_m = 9.78 # From the blueprint (9.78 m)
57
-
58
- # Calculate pixel-to-meter ratio
59
- pixel_to_meter_width = blueprint_width_m / image_width
60
- pixel_to_meter_height = blueprint_height_m / image_height
61
- pixel_to_meter = (pixel_to_meter_width + pixel_to_meter_height) / 2 # Average for simplicity
62
-
63
- # Convert wall length to meters
64
- total_wall_length_m = total_wall_length_pixels * pixel_to_meter
65
-
66
- # Estimate wall area (assume wall height of 3 m for simplicity)
67
- wall_height_m = 3 # Standard room height
68
- wall_area = total_wall_length_m * wall_height_m
69
-
70
- # Estimate foundation area (based on the blueprint's total area)
71
- total_area = blueprint_width_m * blueprint_height_m # 27 m × 9.78 m
72
- foundation_area = total_area * 0.1 # Assume 10% of the total area is foundation
73
-
74
- # Calculate materials
75
- materials = calculate_materials_from_dimensions(wall_area, foundation_area)
76
-
77
- # Format the output
78
- formatted_materials = {
79
- "cement": f"{materials['cement']:.2f} kg",
80
- "bricks": f"{materials['bricks']:.0f} units",
81
- "steel": f"{materials['steel']:.2f} kg"
82
- }
83
-
84
- return formatted_materials
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
  # Set up Gradio interface
87
  interface = gr.Interface(
88
  fn=process_blueprint,
89
- inputs=gr.Image(type="filepath", label="Upload Blueprint Image"),
 
 
 
 
 
90
  outputs=gr.JSON(label="Material Estimates"),
91
  title="Blueprint Material Estimator",
92
- description="Upload a blueprint image to estimate construction materials."
 
 
 
93
  )
94
 
95
  # Launch the interface
96
  if __name__ == "__main__":
 
97
  interface.launch(share=False)
 
1
  import cv2
2
  import numpy as np
 
3
  import gradio as gr
4
+ from pdf2image import convert_from_path
5
+ import os
6
+ import tempfile
7
+ import logging
8
+
9
+ # Set up logging to debug.log
10
+ logging.basicConfig(
11
+ filename='debug.log',
12
+ level=logging.DEBUG,
13
+ format='%(asctime)s - %(levelname)s - %(message)s'
14
+ )
15
+ logger = logging.getLogger(__name__)
16
 
17
  # Function to calculate materials based on blueprint dimensions
18
  def calculate_materials_from_dimensions(wall_area, foundation_area):
19
+ """
20
+ Calculate required materials (cement, bricks, steel) based on wall and foundation areas.
21
+ Args:
22
+ wall_area (float): Wall area in square meters.
23
+ foundation_area (float): Foundation area in square meters.
24
+ Returns:
25
+ dict: Material quantities (cement in kg, bricks in units, steel in kg).
26
+ Raises:
27
+ ValueError: If areas are negative or invalid.
28
+ """
29
+ logger.debug(f"Calculating materials for wall_area={wall_area}, foundation_area={foundation_area}")
30
+
31
+ # Validate inputs
32
+ if not isinstance(wall_area, (int, float)) or not isinstance(foundation_area, (int, float)):
33
+ logger.error("Invalid area type: wall_area and foundation_area must be numeric")
34
+ raise ValueError("Wall and foundation areas must be numeric")
35
+ if wall_area < 0 or foundation_area < 0:
36
+ logger.error("Negative areas provided: wall_area=%s, foundation_area=%s", wall_area, foundation_area)
37
+ raise ValueError("Wall and foundation areas must be non-negative")
38
+
39
  materials = {
40
  "cement": 0,
41
  "bricks": 0,
 
46
  if wall_area > 0:
47
  materials['cement'] += wall_area * 10 # 10 kg cement per m² for walls
48
  materials['bricks'] += wall_area * 500 # 500 bricks per m² for walls
49
+ materials['steel'] += wall_area * 2 # 2 kg steel per m² for walls
50
+ logger.debug("Wall materials: cement=%s kg, bricks=%s, steel=%s kg",
51
+ materials['cement'], materials['bricks'], materials['steel'])
52
 
53
  # Foundation calculations (in m²)
54
  if foundation_area > 0:
55
  materials['cement'] += foundation_area * 20 # 20 kg cement per m² for foundation
56
  materials['bricks'] += foundation_area * 750 # 750 bricks per m² for foundation
57
+ materials['steel'] += foundation_area * 5 # 5 kg steel per m² for foundation
58
+ logger.debug("Foundation materials added: cement=%s kg, bricks=%s, steel=%s kg",
59
+ materials['cement'], materials['bricks'], materials['steel'])
60
 
61
+ logger.info("Material calculation complete: %s", materials)
62
  return materials
63
 
64
+ # Function to process the blueprint from a PDF
65
+ def process_blueprint(pdf_path, blueprint_width_m=27, blueprint_height_m=9.78, poppler_path=None):
66
+ """
67
+ Process a PDF blueprint to estimate construction materials.
68
+ Args:
69
+ pdf_path (str): Path to the PDF file.
70
+ blueprint_width_m (float): Blueprint width in meters (default: 27).
71
+ blueprint_height_m (float): Blueprint height in meters (default: 9.78).
72
+ poppler_path (str, optional): Path to poppler binaries.
73
+ Returns:
74
+ dict: Formatted material estimates or error message.
75
+ """
76
+ logger.info("Starting blueprint processing for PDF: %s", pdf_path)
77
+
78
+ # Validate inputs
79
+ if not os.path.exists(pdf_path):
80
+ logger.error("PDF file does not exist: %s", pdf_path)
81
+ return {"error": f"PDF file not found: {pdf_path}"}
82
+ if not isinstance(blueprint_width_m, (int, float)) or not isinstance(blueprint_height_m, (int, float)):
83
+ logger.error("Invalid blueprint dimensions: width=%s, height=%s", blueprint_width_m, blueprint_height_m)
84
+ return {"error": "Blueprint width and height must be numeric"}
85
+ if blueprint_width_m <= 0 or blueprint_height_m <= 0:
86
+ logger.error("Invalid blueprint dimensions: width=%s, height=%s", blueprint_width_m, blueprint_height_m)
87
+ return {"error": "Blueprint width and height must be positive"}
88
+
89
+ try:
90
+ # Convert PDF to images
91
+ logger.debug("Converting PDF to image with poppler_path=%s", poppler_path)
92
+ images = convert_from_path(
93
+ pdf_path,
94
+ first_page=1,
95
+ last_page=1,
96
+ poppler_path=poppler_path
97
+ )
98
+ if not images:
99
+ logger.error("No images extracted from PDF")
100
+ return {"error": "No images extracted from the PDF"}
101
+
102
+ logger.info("Successfully extracted %d image(s) from PDF", len(images))
103
+
104
+ # Save the first page as a temporary image
105
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
106
+ images[0].save(temp_file.name, 'PNG')
107
+ temp_image_path = temp_file.name
108
+ logger.debug("Saved temporary image to: %s", temp_image_path)
109
+
110
+ # Verify temporary file exists
111
+ if not os.path.exists(temp_image_path):
112
+ logger.error("Temporary image file not created: %s", temp_image_path)
113
+ return {"error": "Failed to create temporary image file"}
114
+
115
+ # Open the image with OpenCV
116
+ image = cv2.imread(temp_image_path)
117
+ if image is None:
118
+ logger.error("Failed to load image from: %s", temp_image_path)
119
+ return {"error": "Could not load the image from PDF"}
120
+
121
+ logger.info("Loaded image with dimensions: %s", image.shape)
122
+
123
+ # Clean up temporary file
124
+ os.unlink(temp_image_path)
125
+ logger.debug("Deleted temporary image file: %s", temp_image_path)
126
+
127
+ # Convert to grayscale for easier processing
128
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
129
+ logger.debug("Converted image to grayscale")
130
+
131
+ # Apply edge detection to find lines (walls)
132
+ edges = cv2.Canny(gray, 50, 150, apertureSize=3)
133
+ logger.debug("Applied Canny edge detection")
134
+
135
+ # Use Hough Transform to detect lines (walls)
136
+ lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
137
+ logger.debug("Detected %s lines with Hough Transform", len(lines) if lines is not None else 0)
138
+
139
+ # Calculate total wall length (in pixels)
140
+ total_wall_length_pixels = 0
141
+ if lines is not None:
142
+ for line in lines:
143
+ x1, y1, x2, y2 = line[0]
144
+ length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
145
+ total_wall_length_pixels += length
146
+ logger.debug("Line from (%d,%d) to (%d,%d), length=%f pixels", x1, y1, x2, y2, length)
147
+ else:
148
+ logger.warning("No lines detected in the blueprint")
149
+
150
+ logger.info("Total wall length in pixels: %f", total_wall_length_pixels)
151
+
152
+ # Get image dimensions
153
+ image_height, image_width = image.shape[:2]
154
+ logger.debug("Image dimensions: width=%d, height=%d pixels", image_width, image_height)
155
+
156
+ # Calculate pixel-to-meter ratio
157
+ pixel_to_meter_width = blueprint_width_m / image_width
158
+ pixel_to_meter_height = blueprint_height_m / image_height
159
+ pixel_to_meter = (pixel_to_meter_width + pixel_to_meter_height) / 2
160
+ logger.debug("Pixel-to-meter ratios: width=%f, height=%f, average=%f",
161
+ pixel_to_meter_width, pixel_to_meter_height, pixel_to_meter)
162
+
163
+ # Convert wall length to meters
164
+ total_wall_length_m = total_wall_length_pixels * pixel_to_meter
165
+ logger.info("Total wall length in meters: %f", total_wall_length_m)
166
+
167
+ # Estimate wall area (assume wall height of 3 m)
168
+ wall_height_m = 3 # Hardcoded assumption; may need adjustment
169
+ wall_area = total_wall_length_m * wall_height_m
170
+ logger.info("Wall area: %f m² (wall length=%f m, height=%f m)",
171
+ wall_area, total_wall_length_m, wall_height_m)
172
+
173
+ # Estimate foundation area (10% of total blueprint area)
174
+ total_area = blueprint_width_m * blueprint_height_m
175
+ foundation_area = total_area * 0.1 # Hardcoded assumption
176
+ logger.info("Total area: %f m², Foundation area: %f m²", total_area, foundation_area)
177
+
178
+ # Calculate materials
179
+ materials = calculate_materials_from_dimensions(wall_area, foundation_area)
180
+ logger.info("Raw material estimates: %s", materials)
181
+
182
+ # Format the output
183
+ formatted_materials = {
184
+ "cement": f"{materials['cement']:.2f} kg",
185
+ "bricks": f"{materials['bricks']:.0f} units",
186
+ "steel": f"{materials['steel']:.2f} kg"
187
+ }
188
+ logger.info("Formatted material estimates: %s", formatted_materials)
189
+
190
+ return formatted_materials
191
+
192
+ except Exception as e:
193
+ # Customize error message for poppler-related issues
194
+ error_msg = str(e)
195
+ if "Unable to get page count" in error_msg:
196
+ error_msg = (
197
+ "Poppler is not installed or not in PATH. "
198
+ "Please install poppler-utils:\n"
199
+ "- Windows: Download from https://github.com/oschwartz10612/poppler-windows and add to PATH.\n"
200
+ "- Linux: Run 'sudo apt-get install poppler-utils'.\n"
201
+ "- Mac: Run 'brew install poppler'.\n"
202
+ "Alternatively, specify poppler_path in the input (e.g., C:/poppler/bin)."
203
+ )
204
+ logger.error("Processing failed: %s", error_msg)
205
+ return {"error": f"Failed to process PDF: {error_msg}"}
206
 
207
  # Set up Gradio interface
208
  interface = gr.Interface(
209
  fn=process_blueprint,
210
+ inputs=[
211
+ gr.File(file_types=[".pdf"], label="Upload Blueprint PDF"),
212
+ gr.Number(label="Blueprint Width (meters)", value=27),
213
+ gr.Number(label="Blueprint Height (meters)", value=9.78),
214
+ gr.Textbox(label="Poppler Path (optional)", placeholder="e.g., C:/poppler/bin")
215
+ ],
216
  outputs=gr.JSON(label="Material Estimates"),
217
  title="Blueprint Material Estimator",
218
+ description=(
219
+ "Upload a PDF containing a blueprint to estimate construction materials. "
220
+ "Specify blueprint dimensions and optionally provide the path to poppler binaries if not in PATH."
221
+ )
222
  )
223
 
224
  # Launch the interface
225
  if __name__ == "__main__":
226
+ logger.info("Launching Gradio interface")
227
  interface.launch(share=False)