import cv2 import numpy as np from detector import LBWDetector from utils import draw_boxes, overlay_decision_text def process_video(video_path, output_path="output.mp4"): detector = LBWDetector() cap = cv2.VideoCapture(video_path) width = int(cap.get(3)) height = int(cap.get(4)) fps = cap.get(cv2.CAP_PROP_FPS) out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) impact_frame = None impact_point = None hit_stumps = False while cap.isOpened(): ret, frame = cap.read() if not ret: break detections, class_names = detector.detect_objects(frame) labels = [class_names[int(cls_id)] for *_, cls_id in detections] # Draw overlays frame = draw_boxes(frame, detections, class_names) # Detect impact frame if 'pad' in labels and 'ball' in labels: impact_frame = frame.copy() # Assume impact point is ball's center in this frame for x1, y1, x2, y2, conf, cls_id in detections: if class_names[int(cls_id)] == 'ball': impact_point = ((x1 + x2) / 2, (y1 + y2) / 2) break # Check if ball is later detected near stumps if 'stumps' in labels and 'ball' in labels: hit_stumps = True out.write(frame) cap.release() # Append decision screen frame decision_frame = np.zeros((height, width, 3), dtype=np.uint8) decision_frame = overlay_decision_text(decision_frame, impact_point, hit_stumps, impact_frame is not None) for _ in range(int(fps * 2)): # show for 2 seconds out.write(decision_frame) out.release() return output_path