Spaces:
Sleeping
Sleeping
Delete lbw_detector.py
Browse files- lbw_detector.py +0 -127
lbw_detector.py
DELETED
@@ -1,127 +0,0 @@
|
|
1 |
-
# lbw_detector.py
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import numpy as np
|
5 |
-
from torchvision import transforms
|
6 |
-
import cv2
|
7 |
-
from utils import extract_frames
|
8 |
-
from trajectory_predictor import predict_trajectory
|
9 |
-
from visualizer import draw_visuals
|
10 |
-
|
11 |
-
# -----------------------------
|
12 |
-
# Model Definition (UNet-lite)
|
13 |
-
# -----------------------------
|
14 |
-
class DoubleConv(nn.Module):
|
15 |
-
def __init__(self, in_channels, out_channels):
|
16 |
-
super(DoubleConv, self).__init__()
|
17 |
-
self.double_conv = nn.Sequential(
|
18 |
-
nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.ReLU(inplace=True),
|
19 |
-
nn.Conv2d(out_channels, out_channels, 3, padding=1), nn.ReLU(inplace=True)
|
20 |
-
)
|
21 |
-
|
22 |
-
def forward(self, x):
|
23 |
-
return self.double_conv(x)
|
24 |
-
|
25 |
-
class UNet(nn.Module):
|
26 |
-
def __init__(self, in_channels=3, out_channels=1): # ✅ Match model file
|
27 |
-
super(UNet, self).__init__()
|
28 |
-
self.down1 = DoubleConv(in_channels, 64)
|
29 |
-
self.down2 = DoubleConv(64, 128)
|
30 |
-
self.middle = DoubleConv(128, 256)
|
31 |
-
|
32 |
-
self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
|
33 |
-
self.upconv2 = DoubleConv(256, 128)
|
34 |
-
|
35 |
-
self.up1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
|
36 |
-
self.upconv1 = DoubleConv(128, 64)
|
37 |
-
|
38 |
-
self.final = nn.Conv2d(64, out_channels, 1)
|
39 |
-
|
40 |
-
def forward(self, x):
|
41 |
-
d1 = self.down1(x)
|
42 |
-
d2 = self.down2(nn.MaxPool2d(2)(d1))
|
43 |
-
m = self.middle(nn.MaxPool2d(2)(d2))
|
44 |
-
|
45 |
-
u2 = self.up2(m)
|
46 |
-
u2 = self.upconv2(torch.cat([u2, d2], dim=1))
|
47 |
-
|
48 |
-
u1 = self.up1(u2)
|
49 |
-
u1 = self.upconv1(torch.cat([u1, d1], dim=1))
|
50 |
-
|
51 |
-
out = self.final(u1)
|
52 |
-
return out
|
53 |
-
|
54 |
-
# -----------------------------
|
55 |
-
# Load Model
|
56 |
-
# -----------------------------
|
57 |
-
model_path = "models/lbw_drs_unet_model.pth"
|
58 |
-
device = "cpu"
|
59 |
-
|
60 |
-
model = UNet(in_channels=3, out_channels=1) # ✅ Must match trained model
|
61 |
-
state_dict = torch.load(model_path, map_location=device)
|
62 |
-
model.load_state_dict(state_dict)
|
63 |
-
model.to(device)
|
64 |
-
model.eval()
|
65 |
-
|
66 |
-
# -----------------------------
|
67 |
-
# Frame Preprocessing
|
68 |
-
# -----------------------------
|
69 |
-
transform = transforms.Compose([
|
70 |
-
transforms.ToTensor(),
|
71 |
-
])
|
72 |
-
|
73 |
-
def detect_objects_with_model(frame):
|
74 |
-
"""Run segmentation on a frame using the custom model"""
|
75 |
-
input_tensor = transform(frame).unsqueeze(0).to(device)
|
76 |
-
with torch.no_grad():
|
77 |
-
output = model(input_tensor)
|
78 |
-
mask = torch.sigmoid(output).squeeze().cpu().numpy()
|
79 |
-
return mask # shape: (H, W)
|
80 |
-
|
81 |
-
# -----------------------------
|
82 |
-
# Main Analysis Function
|
83 |
-
# -----------------------------
|
84 |
-
def analyze_video(video_path):
|
85 |
-
frames = extract_frames(video_path)
|
86 |
-
ball_positions = []
|
87 |
-
impact_frame_idx = None
|
88 |
-
impact_zone = "unknown"
|
89 |
-
|
90 |
-
for i, frame in enumerate(frames):
|
91 |
-
mask = detect_objects_with_model(frame)
|
92 |
-
|
93 |
-
ball_mask = mask > 0.5
|
94 |
-
pad_mask = None # Not used with single-channel model
|
95 |
-
|
96 |
-
# Ball center detection
|
97 |
-
contours, _ = cv2.findContours(ball_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
98 |
-
if contours:
|
99 |
-
largest = max(contours, key=cv2.contourArea)
|
100 |
-
M = cv2.moments(largest)
|
101 |
-
if M['m00'] != 0:
|
102 |
-
cx = int(M['m10']/M['m00'])
|
103 |
-
cy = int(M['m01']/M['m00'])
|
104 |
-
ball_positions.append((i, cx, cy))
|
105 |
-
|
106 |
-
# Optional: skip impact detection for now (no pad_mask)
|
107 |
-
# If you later upgrade to multi-class model, enable below
|
108 |
-
# if pad_mask is not None and contours:
|
109 |
-
# overlap = np.logical_and(ball_mask, pad_mask).sum()
|
110 |
-
# if overlap > 10:
|
111 |
-
# impact_frame_idx = i
|
112 |
-
# impact_zone = "pad"
|
113 |
-
# break
|
114 |
-
|
115 |
-
trajectory = predict_trajectory(ball_positions)
|
116 |
-
decision = "OUT" if trajectory_hits_stumps(trajectory) else "NOT OUT"
|
117 |
-
result_path = draw_visuals(frames, ball_positions, trajectory, impact_frame_idx, decision)
|
118 |
-
return result_path, decision
|
119 |
-
|
120 |
-
# -----------------------------
|
121 |
-
# Basic Rule: Hits Stumps
|
122 |
-
# -----------------------------
|
123 |
-
def trajectory_hits_stumps(trajectory):
|
124 |
-
for (x, y) in trajectory:
|
125 |
-
if 300 < x < 340 and y < 480:
|
126 |
-
return True
|
127 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|