sanjaybhargavneela1929's picture
Update app.py
a3f45a2 verified
raw
history blame
1.26 kB
from transformers import pipeline
import gradio as gr
# Load model (demo sentiment classifier — replace with your own model later)
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
# Define function to process input and return score
def match_profile(resume_text, linkedin_text):
try:
input_text = (resume_text + " " + linkedin_text)[:1000] # limit length
result = classifier(input_text)
label = result[0]['label']
score = result[0]['score'] * 100
return f"Predicted Label: {label}\nSuitability Score: {score:.2f}"
except Exception as e:
return f"❌ Error: {str(e)}"
# Define Gradio interface
interface = gr.Interface(
fn=match_profile,
inputs=[
gr.Textbox(lines=10, placeholder="Paste Resume Text here...", label="Resume Text"),
gr.Textbox(lines=5, placeholder="Paste LinkedIn Profile Summary here...", label="LinkedIn Text")
],
outputs="text",
title="LIC Profile Matcher",
description="This tool matches an agent’s resume and LinkedIn profile using a BERT model and returns a suitability score."
)
# Launch WITHOUT the share button
interface.launch(share=False) # 👈 No Share via Link button