Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,10 @@ from simple_salesforce import Salesforce
|
|
6 |
from dotenv import load_dotenv
|
7 |
import base64
|
8 |
|
9 |
-
# Load environment variables
|
10 |
load_dotenv()
|
11 |
|
12 |
-
#
|
13 |
SF_USERNAME = os.getenv("SF_USERNAME")
|
14 |
SF_PASSWORD = os.getenv("SF_PASSWORD")
|
15 |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
|
@@ -19,7 +19,7 @@ SF_SCORE_FIELD = os.getenv("SF_SCORE_FIELD", "Suitability_Score__c")
|
|
19 |
SF_LINK_FIELD = os.getenv("SF_RESUME_FIELD_LINK", "Resume_File_Link__c")
|
20 |
SF_RECORD_ID = os.getenv("SF_RECORD_ID")
|
21 |
|
22 |
-
# Validate required
|
23 |
required = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN", "SF_RECORD_ID"]
|
24 |
missing = [var for var in required if not os.getenv(var)]
|
25 |
if missing:
|
@@ -36,45 +36,45 @@ sf = Salesforce(
|
|
36 |
domain=domain
|
37 |
)
|
38 |
|
39 |
-
# Load Hugging Face model
|
40 |
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
41 |
|
42 |
-
# Function to process PDF
|
43 |
def process_resume(file):
|
44 |
try:
|
45 |
record_id = SF_RECORD_ID
|
46 |
|
47 |
# Extract text from PDF
|
48 |
with pdfplumber.open(file.name) as pdf:
|
49 |
-
|
50 |
|
51 |
-
if not
|
52 |
-
return "β No text found in
|
53 |
|
54 |
-
#
|
55 |
-
result = classifier(
|
56 |
label = result[0]['label']
|
57 |
score = round(float(result[0]['score']) * 100, 2)
|
58 |
summary = f"Predicted Label: {label}\nSuitability Score: {score:.2f}"
|
59 |
|
60 |
-
# Encode PDF
|
61 |
with open(file.name, "rb") as f:
|
62 |
encoded_pdf = base64.b64encode(f.read()).decode("utf-8")
|
63 |
|
64 |
-
# Upload as ContentVersion
|
65 |
-
|
66 |
"Title": "Resume",
|
67 |
"PathOnClient": file.name,
|
68 |
"VersionData": encoded_pdf
|
69 |
})
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
content_doc_id = query_result["records"][0]["ContentDocumentId"]
|
76 |
|
77 |
-
# Link file to record
|
78 |
sf.ContentDocumentLink.create({
|
79 |
"ContentDocumentId": content_doc_id,
|
80 |
"LinkedEntityId": record_id,
|
@@ -82,25 +82,25 @@ def process_resume(file):
|
|
82 |
"Visibility": "AllUsers"
|
83 |
})
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
|
88 |
-
# Update record with score
|
89 |
sf.__getattr__(SF_OBJECT_NAME).update(record_id, {
|
90 |
SF_SCORE_FIELD: score,
|
91 |
-
SF_LINK_FIELD:
|
92 |
})
|
93 |
|
94 |
-
return f"{summary}\n\nβ
Score and
|
95 |
|
96 |
except Exception as e:
|
97 |
return f"β Error: {str(e)}"
|
98 |
|
99 |
-
# Gradio
|
100 |
gr.Interface(
|
101 |
fn=process_resume,
|
102 |
-
inputs=gr.File(label="Upload Resume PDF", file_types=[".pdf"]),
|
103 |
outputs="text",
|
104 |
title="LIC Resume AI Scorer",
|
105 |
-
description="Upload a resume PDF. It will be scored and stored in Salesforce."
|
106 |
-
).launch(share=False)
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
import base64
|
8 |
|
9 |
+
# Load environment variables from .env
|
10 |
load_dotenv()
|
11 |
|
12 |
+
# Salesforce credentials
|
13 |
SF_USERNAME = os.getenv("SF_USERNAME")
|
14 |
SF_PASSWORD = os.getenv("SF_PASSWORD")
|
15 |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
|
|
|
19 |
SF_LINK_FIELD = os.getenv("SF_RESUME_FIELD_LINK", "Resume_File_Link__c")
|
20 |
SF_RECORD_ID = os.getenv("SF_RECORD_ID")
|
21 |
|
22 |
+
# Validate required credentials
|
23 |
required = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN", "SF_RECORD_ID"]
|
24 |
missing = [var for var in required if not os.getenv(var)]
|
25 |
if missing:
|
|
|
36 |
domain=domain
|
37 |
)
|
38 |
|
39 |
+
# Load Hugging Face model
|
40 |
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
41 |
|
|
|
42 |
def process_resume(file):
|
43 |
try:
|
44 |
record_id = SF_RECORD_ID
|
45 |
|
46 |
# Extract text from PDF
|
47 |
with pdfplumber.open(file.name) as pdf:
|
48 |
+
extracted_text = "\n".join([page.extract_text() or "" for page in pdf.pages])
|
49 |
|
50 |
+
if not extracted_text.strip():
|
51 |
+
return "β No extractable text found in the PDF."
|
52 |
|
53 |
+
# Call Hugging Face model
|
54 |
+
result = classifier(extracted_text[:1000])
|
55 |
label = result[0]['label']
|
56 |
score = round(float(result[0]['score']) * 100, 2)
|
57 |
summary = f"Predicted Label: {label}\nSuitability Score: {score:.2f}"
|
58 |
|
59 |
+
# Encode PDF in base64
|
60 |
with open(file.name, "rb") as f:
|
61 |
encoded_pdf = base64.b64encode(f.read()).decode("utf-8")
|
62 |
|
63 |
+
# Upload file as ContentVersion
|
64 |
+
content_result = sf.ContentVersion.create({
|
65 |
"Title": "Resume",
|
66 |
"PathOnClient": file.name,
|
67 |
"VersionData": encoded_pdf
|
68 |
})
|
69 |
|
70 |
+
# Get ContentDocumentId from ContentVersion
|
71 |
+
version_id = content_result.get("id")
|
72 |
+
query_result = sf.query(
|
73 |
+
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{version_id}'"
|
74 |
+
)
|
75 |
content_doc_id = query_result["records"][0]["ContentDocumentId"]
|
76 |
|
77 |
+
# Link file to Salesforce record
|
78 |
sf.ContentDocumentLink.create({
|
79 |
"ContentDocumentId": content_doc_id,
|
80 |
"LinkedEntityId": record_id,
|
|
|
82 |
"Visibility": "AllUsers"
|
83 |
})
|
84 |
|
85 |
+
# Create download link
|
86 |
+
download_link = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_doc_id}"
|
87 |
|
88 |
+
# Update record with score and link
|
89 |
sf.__getattr__(SF_OBJECT_NAME).update(record_id, {
|
90 |
SF_SCORE_FIELD: score,
|
91 |
+
SF_LINK_FIELD: download_link
|
92 |
})
|
93 |
|
94 |
+
return f"{summary}\n\nβ
Score and resume uploaded to Salesforce.\nπ [Download Resume]({download_link})"
|
95 |
|
96 |
except Exception as e:
|
97 |
return f"β Error: {str(e)}"
|
98 |
|
99 |
+
# Gradio Interface
|
100 |
gr.Interface(
|
101 |
fn=process_resume,
|
102 |
+
inputs=gr.File(label="Upload Resume (PDF)", file_types=[".pdf"]),
|
103 |
outputs="text",
|
104 |
title="LIC Resume AI Scorer",
|
105 |
+
description="Upload a resume PDF. It will be scored and stored in Salesforce automatically."
|
106 |
+
).launch(share=False)
|