Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,19 @@
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
|
4 |
-
# Load a pre-trained sentiment analysis model for demo purposes
|
5 |
-
# You can replace this with your fine-tuned model later
|
6 |
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
7 |
|
8 |
def match_profile(resume_text, linkedin_text):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
# Gradio Interface
|
20 |
interface = gr.Interface(
|
21 |
fn=match_profile,
|
22 |
inputs=[
|
@@ -28,5 +25,4 @@ interface = gr.Interface(
|
|
28 |
description="This tool matches an agent’s resume and LinkedIn profile using a BERT model and returns a suitability score."
|
29 |
)
|
30 |
|
31 |
-
# Launch the app
|
32 |
interface.launch()
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
|
|
|
|
|
4 |
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
5 |
|
6 |
def match_profile(resume_text, linkedin_text):
|
7 |
+
try:
|
8 |
+
# Combine input safely and truncate
|
9 |
+
input_text = (resume_text + " " + linkedin_text)[:1000] # Trim to 1000 chars
|
10 |
+
result = classifier(input_text)
|
11 |
+
label = result[0]['label']
|
12 |
+
score = result[0]['score'] * 100
|
13 |
+
return f"Predicted Label: {label}\nSuitability Score: {score:.2f}"
|
14 |
+
except Exception as e:
|
15 |
+
return f"❌ Error: {str(e)}"
|
16 |
|
|
|
17 |
interface = gr.Interface(
|
18 |
fn=match_profile,
|
19 |
inputs=[
|
|
|
25 |
description="This tool matches an agent’s resume and LinkedIn profile using a BERT model and returns a suitability score."
|
26 |
)
|
27 |
|
|
|
28 |
interface.launch()
|