Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from datasets import load_dataset | |
import json | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
COLS, | |
AutoEvalColumn, | |
fields, | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN | |
from src.populate import get_leaderboard_df | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, | |
local_dir=EVAL_REQUESTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
dataset = load_dataset("dtcxzyw/llvm-apr-benchmark") | |
except Exception: | |
restart_space() | |
total_issues = dataset.num_rows["test"] | |
bug_id_to_time = dict() | |
bug_id_to_type = dict() | |
bug_id_to_patch = dict() | |
bug_id_by_cat = { | |
"crash": [], | |
"miscompilation": [], | |
"hang": [], | |
} | |
bug_id_to_comp = dict() | |
bug_id_to_title = dict() | |
comp_bug_count = dict() | |
for issue in dataset["test"]: | |
bug_id_to_time[issue["bug_id"]] = pd.to_datetime(issue["knowledge_cutoff"]) | |
bug_id_by_cat[issue["bug_type"]].append(issue["bug_id"]) | |
bug_id_to_type[issue["bug_id"]] = issue["bug_type"] | |
bug_id_to_comp[issue["bug_id"]] = issue["hints"]["components"] | |
for comp in issue["hints"]["components"]: | |
comp_bug_count[comp] = comp_bug_count.get(comp, 0) + 1 | |
bug_id_to_title[issue["bug_id"]] = "Issue " + issue["bug_id"] + ": " + issue["issue"]["title"] | |
bug_id_to_patch[issue["bug_id"]] = issue["patch"] | |
timeline_xs = [] | |
timeline_ys = [] | |
timeline_cols = [] | |
timeline_bugids = [] | |
model_cnt = 0 | |
for bug_id, time in bug_id_to_time.items(): | |
timeline_ys.append(0) | |
timeline_cols.append("All") | |
timeline_bugids.append(bug_id) | |
cat_cnt = 4 | |
for cat, bug_ids in bug_id_by_cat.items(): | |
cat_cnt -= 1 | |
for bug_id in bug_ids: | |
timeline_ys.append(cat_cnt) | |
timeline_cols.append(str(cat).capitalize()) | |
timeline_bugids.append(bug_id) | |
LEADERBOARD_DF = get_leaderboard_df(EVAL_REQUESTS_PATH, total_issues) | |
fixed_bug_ids = set() | |
fixed_bug_ids_count = dict() | |
fixed_bug_ids_fast = set() | |
for row in LEADERBOARD_DF.itertuples(): | |
print(row) | |
model_cnt += 1 | |
for fix in row.fixed_bug_ids: | |
timeline_ys.append(-model_cnt) | |
timeline_cols.append(row.method_id) | |
timeline_bugids.append(fix) | |
fixed_bug_ids.add(fix) | |
fixed_bug_ids_count[fix] = fixed_bug_ids_count.get(fix, 0) + 1 | |
for fix in row.fixed_bug_ids_fast: | |
fixed_bug_ids_fast.add(fix) | |
unique_bug_ids = set([bug_id for bug_id, count in fixed_bug_ids_count.items() if count == 1]) | |
timeline_bugtypes = [] | |
for bug_id in timeline_bugids: | |
timeline_xs.append(bug_id_to_time[bug_id]) | |
timeline_bugtypes.append(bug_id_to_type[bug_id]) | |
timeline_df = pd.DataFrame( | |
{ | |
"time": timeline_xs, | |
"model": timeline_ys, | |
"method_name": timeline_cols, | |
"bug_id": timeline_bugids, | |
"bug_type": timeline_bugtypes, | |
} | |
) | |
fixed_by_cat = dict() | |
fixed_by_cat_fast = dict() | |
for bug_id in fixed_bug_ids: | |
fixed_by_cat[bug_id_to_type[bug_id]] = fixed_by_cat.get(bug_id_to_type[bug_id], 0) + 1 | |
for bug_id in fixed_bug_ids_fast: | |
fixed_by_cat_fast[bug_id_to_type[bug_id]] = fixed_by_cat_fast.get(bug_id_to_type[bug_id], 0) + 1 | |
fixed_by_cat["All"] = len(fixed_bug_ids) | |
bug_id_by_cat["All"] = [0] * total_issues | |
fixed_by_cat_fast["All"] = len(fixed_bug_ids_fast) | |
fixed_by_cat_df = pd.DataFrame( | |
{ | |
"Category": [str(cat).capitalize() for cat in fixed_by_cat.keys()], | |
"Total": [len(bug_id_by_cat[cat]) for cat in fixed_by_cat.keys()], | |
"Repaired": list(fixed_by_cat.values()), | |
"Repair Rate (%)": [ | |
round(fixed_by_cat[cat] / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys() | |
], | |
"Repaired (Fast)": [fixed_by_cat_fast.get(cat, 0) for cat in fixed_by_cat.keys()], | |
"Repair Rate (Fast) (%)": [ | |
round(fixed_by_cat_fast.get(cat, 0) / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys() | |
], | |
} | |
) | |
fixed_by_cat_df.sort_values("Total", inplace=True, ascending=False) | |
fixed_by_comp = dict() | |
for bug_id in fixed_bug_ids: | |
for comp in bug_id_to_comp[bug_id]: | |
fixed_by_comp[comp] = fixed_by_comp.get(comp, 0) + 1 | |
fixed_by_comp_fast = dict() | |
for bug_id in fixed_bug_ids_fast: | |
for comp in bug_id_to_comp[bug_id]: | |
fixed_by_comp_fast[comp] = fixed_by_comp_fast.get(comp, 0) + 1 | |
fixed_by_comp_df = pd.DataFrame( | |
{ | |
"Component": list(comp_bug_count.keys()), | |
"Total": list(comp_bug_count.values()), | |
"Repaired": [fixed_by_comp.get(comp, 0) for comp in comp_bug_count.keys()], | |
"Repair Rate (%)": [ | |
round(fixed_by_comp.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys() | |
], | |
"Repaired (Fast)": [fixed_by_comp_fast.get(comp, 0) for comp in comp_bug_count.keys()], | |
"Repair Rate (Fast) (%)": [ | |
round(fixed_by_comp_fast.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys() | |
], | |
} | |
) | |
fixed_by_comp_df.sort_values("Total", inplace=True, ascending=False) | |
unique_bugs_df = pd.DataFrame( | |
{ | |
"Model": [c.method_id for c in LEADERBOARD_DF.itertuples()], | |
"Unique Bugs Fixed": [ | |
len(set(c.fixed_bug_ids).intersection(unique_bug_ids)) for c in LEADERBOARD_DF.itertuples() | |
], | |
} | |
) | |
unique_bugs_df.sort_values("Unique Bugs Fixed", inplace=True, ascending=False) | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.method_name.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.with_hint.name, type="checkboxgroup", label="Hint"), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT + f"\nTotal issues: {total_issues}\n", elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Leaderboard", elem_id="llm-benchmark-tab-table", id=0): | |
leaderboard = init_leaderboard(LEADERBOARD_DF[COLS]) | |
gr.ScatterPlot( | |
timeline_df, | |
x="time", | |
y="model", | |
color="method_name", | |
x_label="Time", | |
y_label="Model", | |
title="Timeline", | |
y_lim=(-model_cnt - 1, 4), | |
tooltip=["bug_id", "method_name", "time", "bug_type"], | |
) | |
gr.Dataframe(fixed_by_cat_df) | |
gr.Dataframe(fixed_by_comp_df) | |
gr.Dataframe(unique_bugs_df) | |
fixed_bug_title_id_pairs = [(bug_id_to_title[bug_id], bug_id) for bug_id in sorted(fixed_bug_ids)] | |
inspect_issue = gr.Dropdown(fixed_bug_title_id_pairs, label="Inspct Issue", interactive=True) | |
golden_patch = gr.Code("", language="cpp", label="Golden Patch") | |
inspect_issue.change( | |
fn=lambda bug_id: bug_id_to_patch.get(bug_id, f"Not Available (bug_id = {bug_id})"), | |
inputs=inspect_issue, | |
outputs=golden_patch, | |
) | |
with gr.TabItem("π Submission", elem_id="llm-benchmark-tab-table", id=1): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=6, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |