Update app.py
Browse files
app.py
CHANGED
|
@@ -1,73 +1,132 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
st.
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
"
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
from transformers import GenerationConfig, BartModel, BartTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM, TextStreamer
|
| 5 |
+
import torch
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
import sys, os
|
| 9 |
+
|
| 10 |
+
path = os.path.abspath(os.path.dirname(__file__))
|
| 11 |
+
sys.path.insert(0, path)
|
| 12 |
+
|
| 13 |
+
from gen_summary import generate_summary
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
st.title("Dialogue Text Summarization")
|
| 17 |
+
st.caption("Natural Language Processing Project 20232")
|
| 18 |
+
|
| 19 |
+
st.write("---")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class StreamlitTextStreamer(TextStreamer):
|
| 23 |
+
def __init__(self, tokenizer, st_container, st_info_container, skip_prompt=False, **decode_kwargs):
|
| 24 |
+
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
| 25 |
+
self.st_container = st_container
|
| 26 |
+
self.st_info_container = st_info_container
|
| 27 |
+
self.text = ""
|
| 28 |
+
self.start_time = None
|
| 29 |
+
self.first_token_time = None
|
| 30 |
+
self.total_tokens = 0
|
| 31 |
+
|
| 32 |
+
def on_finalized_text(self, text: str, stream_end: bool=False):
|
| 33 |
+
if self.start_time is None:
|
| 34 |
+
self.start_time = time.time()
|
| 35 |
+
|
| 36 |
+
if self.first_token_time is None and len(text.strip()) > 0:
|
| 37 |
+
self.first_token_time = time.time()
|
| 38 |
+
|
| 39 |
+
self.text += text
|
| 40 |
+
|
| 41 |
+
self.total_tokens += len(text.split())
|
| 42 |
+
self.st_container.markdown("###### " + self.text)
|
| 43 |
+
time.sleep(0.03)
|
| 44 |
+
|
| 45 |
+
if stream_end:
|
| 46 |
+
total_time = time.time() - self.start_time
|
| 47 |
+
first_token_wait_time = self.first_token_time - self.start_time if self.first_token_time else None
|
| 48 |
+
tokens_per_second = self.total_tokens / total_time if total_time > 0 else None
|
| 49 |
+
|
| 50 |
+
df = pd.DataFrame(data={
|
| 51 |
+
"First token": [first_token_wait_time],
|
| 52 |
+
"Total tokens": [self.total_tokens],
|
| 53 |
+
"Time taken": [total_time],
|
| 54 |
+
"Token per second": [tokens_per_second]
|
| 55 |
+
})
|
| 56 |
+
|
| 57 |
+
self.st_info_container.table(df)
|
| 58 |
+
|
| 59 |
+
def generate_summary(model, input_text, generation_config, tokenizer, st_container, st_info_container) -> str:
|
| 60 |
+
try:
|
| 61 |
+
prefix = "Summarize the following conversation: \n###\n"
|
| 62 |
+
suffix = "\n### Summary:"
|
| 63 |
+
target_length = max(1, int(0.15 * len(input_text.split())))
|
| 64 |
+
|
| 65 |
+
input_ids = tokenizer.encode(prefix + input_text + f"The generated summary should be around {target_length} words." + suffix, return_tensors="pt")
|
| 66 |
+
|
| 67 |
+
# Initialize the Streamlit container and streamer
|
| 68 |
+
streamer = StreamlitTextStreamer(tokenizer, st_container, st_info_container, skip_special_tokens=True, decoder_start_token_id=3)
|
| 69 |
+
|
| 70 |
+
model.generate(input_ids, streamer=streamer, do_sample=True, generation_config=generation_config)
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
raise e
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
with st.sidebar:
|
| 77 |
+
checkpoint = st.selectbox("Model", options=[
|
| 78 |
+
"Choose model",
|
| 79 |
+
"dtruong46me/train-bart-base",
|
| 80 |
+
"dtruong46me/flant5-small",
|
| 81 |
+
"dtruong46me/flant5-base",
|
| 82 |
+
"dtruong46me/flan-t5-s",
|
| 83 |
+
"ntluongg/bart-base-luong"
|
| 84 |
+
])
|
| 85 |
+
st.button("Model detail", use_container_width=True)
|
| 86 |
+
st.write("-----")
|
| 87 |
+
st.write("**Generate Options:**")
|
| 88 |
+
min_new_tokens = st.number_input("Min new tokens", min_value=1, max_value=64, value=10)
|
| 89 |
+
max_new_tokens = st.number_input("Max new tokens", min_value=64, max_value=128, value=64)
|
| 90 |
+
temperature = st.number_input("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
|
| 91 |
+
top_k = st.number_input("Top_k", min_value=1, max_value=50, step=1, value=20)
|
| 92 |
+
top_p = st.number_input("Top_p", min_value=0.01, max_value=1.00, step=0.01, value=1.0)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
height = 200
|
| 96 |
+
|
| 97 |
+
input_text = st.text_area("Dialogue", height=height)
|
| 98 |
+
|
| 99 |
+
generation_config = GenerationConfig(
|
| 100 |
+
min_new_tokens=min_new_tokens,
|
| 101 |
+
max_new_tokens=320,
|
| 102 |
+
temperature=temperature,
|
| 103 |
+
top_p=top_p,
|
| 104 |
+
top_k=top_k
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 108 |
+
|
| 109 |
+
if checkpoint=="Choose model":
|
| 110 |
+
tokenizer = None
|
| 111 |
+
model = None
|
| 112 |
+
|
| 113 |
+
if checkpoint!="Choose model":
|
| 114 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 115 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
if st.button("Submit"):
|
| 120 |
+
st.write("---")
|
| 121 |
+
st.write("## Summary")
|
| 122 |
+
|
| 123 |
+
if checkpoint=="Choose model":
|
| 124 |
+
st.error("Please selece a model!")
|
| 125 |
+
|
| 126 |
+
else:
|
| 127 |
+
if input_text=="":
|
| 128 |
+
st.error("Please enter a dialogue!")
|
| 129 |
+
# generate_summary(model, " ".join(input_text.split()), generation_config, tokenizer)
|
| 130 |
+
st_container = st.empty()
|
| 131 |
+
st_info_container = st.empty()
|
| 132 |
+
generate_summary(model, " ".join(input_text.split()), generation_config, tokenizer, st_container, st_info_container)
|