File size: 13,762 Bytes
773c7bd 376b5d9 773c7bd 376b5d9 773c7bd d9a3d58 376b5d9 773c7bd b9b18bd 2566251 773c7bd d9a3d58 376b5d9 773c7bd d9a3d58 773c7bd d9a3d58 773c7bd b9b18bd f58d262 b8fd884 f58d262 d9a3d58 f58d262 b9b18bd fb753cd d9a3d58 b8fd884 d9a3d58 b8fd884 c837795 f58d262 b8fd884 c837795 b9b18bd d9a3d58 c837795 d9a3d58 b9b18bd d9a3d58 c837795 773c7bd d9a3d58 c837795 773c7bd c837795 d9a3d58 b9b18bd c837795 d9a3d58 f58d262 fb753cd d9a3d58 c837795 f58d262 c837795 d9a3d58 c837795 d9a3d58 c837795 f58d262 d9a3d58 f58d262 c837795 b9b18bd fb753cd 7530f4b b9b18bd c837795 d9a3d58 b8fd884 d9a3d58 b9b18bd 773c7bd b8fd884 773c7bd d9a3d58 b9b18bd d9a3d58 773c7bd d9a3d58 773c7bd b9b18bd 773c7bd d9a3d58 773c7bd f58d262 d9a3d58 b085276 f58d262 b8fd884 b9b18bd b8fd884 773c7bd d9a3d58 773c7bd 7a1eae9 d9a3d58 773c7bd b9b18bd d9a3d58 773c7bd d9a3d58 b8fd884 d9a3d58 b9b18bd 376b5d9 773c7bd f72f303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import csv
import datetime
import os
import re
import time
import uuid
from io import StringIO
import gradio as gr
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from components import caption_chain, tag_chain
from components import pexels, utils
import cv2
from moviepy.editor import AudioFileClip, ImageSequenceClip
import gc
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
# download for mecab
os.system("python -m unidic download")
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)
# This will trigger downloading model
print("Downloading if not downloaded viXTTS")
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
snapshot_download(
repo_id=repo_id,
repo_type="model",
local_dir=checkpoint_dir,
)
hf_hub_download(
repo_id="coqui/XTTS-v2",
filename="speakers_xtts.pth",
local_dir=checkpoint_dir,
)
xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
MODEL.cuda()
supported_languages = config.languages
if not "vi" in supported_languages:
supported_languages.append("vi")
# Load LangChain components
model = AutoModelForSeq2SeqLM.from_pretrained("declare-lab/flan-alpaca-large")
tokenizer = AutoTokenizer.from_pretrained("declare-lab/flan-alpaca-large")
pipe = pipeline(
'text2text-generation',
model=model,
tokenizer=tokenizer,
max_length=120
)
local_llm = HuggingFacePipeline(pipeline=pipe)
llm_chain = caption_chain.chain(llm=local_llm)
sum_llm_chain = tag_chain.chain(llm=local_llm)
pexels_api_key = os.getenv('pexels_api_key')
def normalize_vietnamese_text(text):
text = (
TTSnorm(text, unknown=False, lower=False, rule=True)
.replace("..", ".")
.replace("!.", "!")
.replace("?.", "?")
.replace(" .", ".")
.replace(" ,", ",")
.replace('"', "")
.replace("'", "")
.replace("AI", "Ây Ai")
.replace("A.I", "Ây Ai")
.replace("%", "phần trăm")
)
return text
def calculate_keep_len(text, lang):
"""Simple hack for short sentences"""
if lang in ["ja", "zh-cn"]:
return -1
word_count = len(text.split())
num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
if word_count < 5:
return 15000 * word_count + 2000 * num_punct
elif word_count < 10:
return 13000 * word_count + 2000 * num_punct
return -1
def create_video_from_audio(audio_path, images, output_path):
audio_clip = AudioFileClip(audio_path)
duration = audio_clip.duration
# Calculate frame rate based on number of images and audio duration
frame_rate = len(images) / duration
# Create video clip from images
video_clip = ImageSequenceClip(images, fps=frame_rate)
# Set audio for video clip
final_clip = video_clip.set_audio(audio_clip)
# Write result to file
final_clip.write_videofile(output_path, codec='libx264', audio_codec='aac')
audio_clip.close()
video_clip.close()
final_clip.close()
def truncate_prompt(prompt, tokenizer, max_length=512):
"""Truncate prompt to fit within the maximum token length."""
tokens = tokenizer.tokenize(prompt)
if len(tokens) > max_length:
tokens = tokens[:max_length]
prompt = tokenizer.convert_tokens_to_string(tokens)
return prompt
@spaces.GPU
def predict(
prompt,
language,
audio_file_pth,
normalize_text=True,
use_llm=False, # Thêm tùy chọn sử dụng LLM
content_type="Theo yêu cầu", # Loại nội dung (ví dụ: "triết lý sống" hoặc "Theo yêu cầu")
):
if use_llm:
# Nếu sử dụng LLM, tạo nội dung văn bản từ đầu vào
print("I: Generating text with LLM...")
generated_text = create_content(prompt, content_type, language)
print(f"Generated text: {generated_text}")
prompt = generated_text # Gán văn bản được tạo bởi LLM vào biến prompt
if language not in supported_languages:
metrics_text = gr.Warning(
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
)
return (None, None, metrics_text)
speaker_wav = audio_file_pth
if len(prompt) < 2:
metrics_text = gr.Warning("Please give a longer prompt text")
return (None, None, metrics_text)
try:
metrics_text = ""
t_latent = time.time()
try:
(
gpt_cond_latent,
speaker_embedding,
) = MODEL.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=30,
gpt_cond_chunk_len=4,
max_ref_length=60,
)
except Exception as e:
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"It appears something wrong with reference, did you unmute your microphone?"
)
return (None, None, metrics_text)
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
if normalize_text and language == "vi":
prompt = normalize_vietnamese_text(prompt)
# Truncate prompt to fit within the maximum token length
prompt = truncate_prompt(prompt, tokenizer)
print("I: Generating new audio...")
t0 = time.time()
out = MODEL.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=5.0,
temperature=0.75,
enable_text_splitting=True,
)
inference_time = time.time() - t0
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
metrics_text += (
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
)
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
print(f"Real-time factor (RTF): {real_time_factor}")
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
# Temporary hack for short sentences
keep_len = calculate_keep_len(prompt, language)
out["wav"] = out["wav"][:keep_len]
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
# Tạo video từ file audio
print("I: Generating video from audio...")
# Sử dụng UUID để tạo tên thư mục ngắn gọn
folder_name = f"video_{uuid.uuid4().hex}"
os.makedirs(folder_name, exist_ok=True)
folder_path = os.path.join(folder_name, "images")
os.makedirs(folder_path, exist_ok=True)
# Tạo video từ file audio và các hình ảnh
folder_name, sentences = pexels.generate_videos(prompt, pexels_api_key, "landscape", 1080, 1920, llm_chain, sum_llm_chain)
utils.combine_videos(folder_name)
video_path = os.path.join(folder_name, "Final_Ad_Video.mp4")
print(f"I: Video generated at {video_path}")
metrics_text += f"Video generated at {video_path}\n"
return ("output.wav", video_path, metrics_text)
except RuntimeError as e:
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need to restart
print(
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
error_data = [
error_time,
prompt,
language,
audio_file_pth,
]
error_data = [str(e) if type(e) != str else e for e in error_data]
print(error_data)
print(speaker_wav)
write_io = StringIO()
csv.writer(write_io).writerows([error_data])
csv_upload = write_io.getvalue().encode()
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
print("Writing error csv")
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=csv_upload,
path_in_repo=filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
# speaker_wav
print("Writing error reference audio")
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=speaker_wav,
path_in_repo=speaker_filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
# HF Space specific.. This error is unrecoverable need to restart space
space = api.get_space_runtime(repo_id=repo_id)
if space.stage != "BUILDING":
api.restart_space(repo_id=repo_id)
else:
print("TRIED TO RESTART but space is building")
else:
if "Failed to decode" in str(e):
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"It appears something wrong with reference, did you unmute your microphone?"
)
else:
print("RuntimeError: non device-side assert error:", str(e))
metrics_text = gr.Warning(
"Something unexpected happened please retry again."
)
return (None, None, metrics_text)
return ("output.wav", None, metrics_text)
# Cập nhật giao diện Gradio
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"""
# tts@TDNM ✨ https://www.tdn-m.com
"""
)
with gr.Column():
# placeholder to align the image
pass
with gr.Row():
with gr.Column():
input_text_gr = gr.Textbox(
label="Text Prompt (Văn bản cần đọc)",
info="Mỗi câu nên từ 10 từ trở lên.",
value="Xin chào, tôi là một mô hình chuyển đổi văn bản thành giọng nói tiếng Việt.",
)
language_gr = gr.Dropdown(
label="Language (Ngôn ngữ)",
choices=[
"vi",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh-cn",
"ja",
"ko",
"hu",
"hi",
],
max_choices=1,
value="vi",
)
normalize_text = gr.Checkbox(
label="Chuẩn hóa văn bản tiếng Việt",
info="Normalize Vietnamese text",
value=True,
)
use_llm_checkbox = gr.Checkbox(
label="Sử dụng LLM để tạo nội dung",
info="Use LLM to generate content",
value=False,
)
content_type_dropdown = gr.Dropdown(
label="Loại nội dung",
choices=["triết lý sống", "Theo yêu cầu"],
value="Theo yêu cầu",
)
ref_gr = gr.Audio(
label="Reference Audio (Giọng mẫu)",
type="filepath",
value="nam-tai-lieu.wav",
)
tts_button = gr.Button(
"Đọc 🗣️🔥",
elem_id="send-btn",
visible=True,
variant="primary",
)
with gr.Column():
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
video_gr = gr.Video(label="Generated Video")
out_text_gr = gr.Text(label="Metrics")
tts_button.click(
predict,
[
input_text_gr,
language_gr,
ref_gr,
normalize_text,
use_llm_checkbox, # Thêm checkbox để bật/tắt LLM
content_type_dropdown, # Thêm dropdown để chọn loại nội dung
],
outputs=[audio_gr, video_gr, out_text_gr],
api_name="predict",
)
demo.queue()
demo.launch(debug=True, show_api=True, share=True) |