File size: 10,733 Bytes
773c7bd
 
376b5d9
773c7bd
376b5d9
 
773c7bd
 
d9a3d58
376b5d9
 
 
773c7bd
 
 
c9207a5
 
b9b18bd
c9207a5
773c7bd
c9207a5
d9a3d58
376b5d9
773c7bd
 
d9a3d58
 
773c7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a3d58
773c7bd
 
c9207a5
8c6978c
 
b9b18bd
 
 
 
c9207a5
b9b18bd
 
c9207a5
 
 
 
 
 
 
 
 
 
 
 
 
b9b18bd
f58d262
 
 
 
 
 
 
 
 
 
 
 
b8fd884
f58d262
 
 
 
d9a3d58
f58d262
 
 
 
 
 
 
 
 
 
d9a3d58
 
 
 
 
 
 
c837795
f58d262
b8fd884
c837795
c9207a5
d9a3d58
 
c837795
d9a3d58
c9207a5
d9a3d58
c837795
 
 
773c7bd
d9a3d58
 
 
 
 
c837795
 
 
773c7bd
c837795
d9a3d58
 
 
 
c9207a5
c837795
d9a3d58
f58d262
 
c9207a5
d9a3d58
c837795
 
 
 
 
 
 
 
f58d262
c837795
 
d9a3d58
 
 
 
c837795
d9a3d58
c837795
f58d262
d9a3d58
f58d262
 
c837795
 
d9a3d58
c9207a5
d9a3d58
 
 
 
 
c9207a5
d9a3d58
 
 
 
 
 
 
 
 
 
 
 
 
 
c9207a5
d9a3d58
 
 
 
 
 
 
c9207a5
d9a3d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8fd884
d9a3d58
 
 
 
 
 
c9207a5
 
773c7bd
 
 
 
d9a3d58
 
b9b18bd
d9a3d58
 
773c7bd
c9207a5
773c7bd
 
 
 
 
b9b18bd
 
 
773c7bd
 
d9a3d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
773c7bd
 
f58d262
d9a3d58
 
b085276
f58d262
773c7bd
d9a3d58
773c7bd
7a1eae9
d9a3d58
 
 
 
 
 
773c7bd
 
 
 
d9a3d58
773c7bd
 
 
d9a3d58
 
 
 
 
 
c9207a5
376b5d9
773c7bd
 
 
f72f303
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import csv
import datetime
import os
import re
import time
import uuid
from io import StringIO
import gradio as gr
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.llms import HuggingFacePipeline

# Download for mecab
os.system("python -m unidic download")
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)

# This will trigger downloading model
print("Downloading if not downloaded viXTTS")
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
    snapshot_download(
        repo_id=repo_id,
        repo_type="model",
        local_dir=checkpoint_dir,
    )
    hf_hub_download(
        repo_id="coqui/XTTS-v2",
        filename="speakers_xtts.pth",
        local_dir=checkpoint_dir,
    )
xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
    config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
    MODEL.cuda()
supported_languages = config.languages
if not "vi" in supported_languages:
    supported_languages.append("vi")

# Load LangChain components with the new model
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-xl")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
pipe = pipeline(
    'text2text-generation',
    model=model,
    tokenizer=tokenizer,
    max_length=1024  # Update max_length
)
local_llm = HuggingFacePipeline(pipeline=pipe)

# Define the caption_chain function
def caption_chain(llm):
    sum_template = """What is the most significant action, place, or thing? Say it in at most 5 words:
    
    {sentence}
    """
    sum_prompt = PromptTemplate(template=sum_template, input_variables=["sentence"])
    sum_llm_chain = LLMChain(prompt=sum_prompt, llm=llm)
    return sum_llm_chain

# Initialize the caption_chain and tag_chain
llm_chain = caption_chain(llm=local_llm)

def normalize_vietnamese_text(text):
    text = (
        TTSnorm(text, unknown=False, lower=False, rule=True)
        .replace("..", ".")
        .replace("!.", "!")
        .replace("?.", "?")
        .replace(" .", ".")
        .replace(" ,", ",")
        .replace('"', "")
        .replace("'", "")
        .replace("AI", "Ây Ai")
        .replace("A.I", "Ây Ai")
        .replace("%", "phần trăm")
    )
    return text

def calculate_keep_len(text, lang):
    """Simple hack for short sentences"""
    if lang in ["ja", "zh-cn"]:
        return -1
    word_count = len(text.split())
    num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
    if word_count < 5:
        return 15000 * word_count + 2000 * num_punct
    elif word_count < 10:
        return 13000 * word_count + 2000 * num_punct
    return -1

@spaces.GPU
def predict(
    prompt,
    language,
    audio_file_pth,
    normalize_text=True,
):
    if language not in supported_languages:
        metrics_text = gr.Warning(
            f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
        )
        return (None, metrics_text)

    speaker_wav = audio_file_pth
    if len(prompt) < 2:
        metrics_text = gr.Warning("Please give a longer prompt text")
        return (None, metrics_text)

    try:
        metrics_text = ""
        t_latent = time.time()
        try:
            (
                gpt_cond_latent,
                speaker_embedding,
            ) = MODEL.get_conditioning_latents(
                audio_path=speaker_wav,
                gpt_cond_len=30,
                gpt_cond_chunk_len=4,
                max_ref_length=60,
            )
        except Exception as e:
            print("Speaker encoding error", str(e))
            metrics_text = gr.Warning(
                "It appears something wrong with reference, did you unmute your microphone?"
            )
            return (None, metrics_text)

        prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
        if normalize_text and language == "vi":
            prompt = normalize_vietnamese_text(prompt)

        print("I: Generating new audio...")
        t0 = time.time()
        out = MODEL.inference(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            repetition_penalty=5.0,
            temperature=0.75,
            enable_text_splitting=True,
        )
        inference_time = time.time() - t0
        print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
        metrics_text += (
            f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
        )
        real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
        print(f"Real-time factor (RTF): {real_time_factor}")
        metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"

        # Temporary hack for short sentences
        keep_len = calculate_keep_len(prompt, language)
        out["wav"] = out["wav"][:keep_len]
        torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
    except RuntimeError as e:
        if "device-side assert" in str(e):
            # Cannot do anything on CUDA device side error, need to restart
            print(
                f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
                flush=True,
            )
            gr.Warning("Unhandled Exception encounter, please retry in a minute")
            print("CUDA device-assert Runtime encountered need restart")
            error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
            error_data = [
                error_time,
                prompt,
                language,
                audio_file_pth,
            ]
            error_data = [str(e) if type(e) != str else e for e in error_data]
            print(error_data)
            print(speaker_wav)
            write_io = StringIO()
            csv.writer(write_io).writerows([error_data])
            csv_upload = write_io.getvalue().encode()
            filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
            print("Writing error CSV")
            error_api = HfApi()
            error_api.upload_file(
                path_or_fileobj=csv_upload,
                path_in_repo=filename,
                repo_id="coqui/xtts-flagged-dataset",
                repo_type="dataset",
            )
            # Speaker WAV
            print("Writing error reference audio")
            speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
            error_api = HfApi()
            error_api.upload_file(
                path_or_fileobj=speaker_wav,
                path_in_repo=speaker_filename,
                repo_id="coqui/xtts-flagged-dataset",
                repo_type="dataset",
            )
            # HF Space specific.. This error is unrecoverable need to restart space
            space = api.get_space_runtime(repo_id=repo_id)
            if space.stage != "BUILDING":
                api.restart_space(repo_id=repo_id)
            else:
                print("TRIED TO RESTART but space is building")
        else:
            if "Failed to decode" in str(e):
                print("Speaker encoding error", str(e))
                metrics_text = gr.Warning(
                    "It appears something wrong with reference, did you unmute your microphone?"
                )
            else:
                print("RuntimeError: non device-side assert error:", str(e))
                metrics_text = gr.Warning(
                    "Something unexpected happened please retry again."
                )
            return (None, metrics_text)
    return ("output.wav", metrics_text)

with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
                # tts@TDNM ✨ https://www.tdn-m.com 
                """
            )
        with gr.Column():
            # Placeholder to align the image
            pass

    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(
                label="Text Prompt (Văn bản cần đọc)",
                info="Mỗi câu nên từ 10 từ trở lên.",
                value="Xin chào, tôi là một mô hình chuyển đổi văn bản thành giọng nói tiếng Việt.",
            )
            language_gr = gr.Dropdown(
                label="Language (Ngôn ngữ)",
                choices=[
                    "vi",
                    "en",
                    "es",
                    "fr",
                    "de",
                    "it",
                    "pt",
                    "pl",
                    "tr",
                    "ru",
                    "nl",
                    "cs",
                    "ar",
                    "zh-cn",
                    "ja",
                    "ko",
                    "hu",
                    "hi",
                ],
                max_choices=1,
                value="vi",
            )
            normalize_text = gr.Checkbox(
                label="Chuẩn hóa văn bản tiếng Việt",
                info="Normalize Vietnamese text",
                value=True,
            )
            ref_gr = gr.Audio(
                label="Reference Audio (Giọng mẫu)",
                type="filepath",
                value="nam-tai-lieu.wav",
            )
            tts_button = gr.Button(
                "Đọc 🗣️🔥",
                elem_id="send-btn",
                visible=True,
                variant="primary",
            )

        with gr.Column():
            audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
            out_text_gr = gr.Text(label="Metrics")

    tts_button.click(
        predict,
        [
            input_text_gr,
            language_gr,
            ref_gr,
            normalize_text,
        ],
        outputs=[audio_gr, out_text_gr],
        api_name="predict",
    )

demo.queue()
demo.launch(debug=True, show_api=True, share=True)