Voff / app.py
TDN-M's picture
Update app.py
5adbdeb verified
raw
history blame
15.1 kB
import csv
import datetime
import os
import re
import time
import uuid
from io import StringIO
import gradio as gr
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
from langchain_community.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from diffusers import StableDiffusionPipeline
from PIL import Image
import cv2
from moviepy.editor import AudioFileClip, ImageSequenceClip
import gc
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
# download for mecab
os.system("python -m unidic download")
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)
# This will trigger downloading model
print("Downloading if not downloaded viXTTS")
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
snapshot_download(
repo_id=repo_id,
repo_type="model",
local_dir=checkpoint_dir,
)
hf_hub_download(
repo_id="coqui/XTTS-v2",
filename="speakers_xtts.pth",
local_dir=checkpoint_dir,
)
xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
MODEL.cuda()
supported_languages = config.languages
if not "vi" in supported_languages:
supported_languages.append("vi")
# Load LangChain components với mô hình mới
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-xl")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
pipe = pipeline(
'text2text-generation',
model=model,
tokenizer=tokenizer,
max_length=1024 # Cập nhật max_length
)
local_llm = HuggingFacePipeline(pipeline=pipe)
llm_chain = caption_chain.chain(llm=local_llm)
sum_llm_chain = tag_chain.chain(llm=local_llm)
pexels_api_key = os.getenv('pexels_api_key')
# Initialize Stable Diffusion Pipeline with TDN-M/East-asian-beauty
image_gen_model_id = "TDN-M/East-asian-beauty"
device = "cuda" if torch.cuda.is_available() else "cpu"
image_generator = StableDiffusionPipeline.from_pretrained(image_gen_model_id, torch_dtype=torch.float16)
image_generator = image_generator.to(device)
def normalize_vietnamese_text(text):
text = (
TTSnorm(text, unknown=False, lower=False, rule=True)
.replace("..", ".")
.replace("!.", "!")
.replace("?.", "?")
.replace(" .", ".")
.replace(" ,", ",")
.replace('"', "")
.replace("'", "")
.replace("AI", "Ây Ai")
.replace("A.I", "Ây Ai")
.replace("%", "phần trăm")
)
return text
def calculate_keep_len(text, lang):
"""Simple hack for short sentences"""
if lang in ["ja", "zh-cn"]:
return -1
word_count = len(text.split())
num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
if word_count < 5:
return 15000 * word_count + 2000 * num_punct
elif word_count < 10:
return 13000 * word_count + 2000 * num_punct
return -1
def create_video_from_audio_and_images(audio_path, images, output_path):
audio_clip = AudioFileClip(audio_path)
duration = audio_clip.duration
# Calculate frame rate based on number of images and audio duration
frame_rate = len(images) / duration
# Create video clip from images
video_clip = ImageSequenceClip(images, fps=frame_rate)
# Set audio for video clip
final_clip = video_clip.set_audio(audio_clip)
# Write result to file
final_clip.write_videofile(output_path, codec='libx264', audio_codec='aac')
audio_clip.close()
video_clip.close()
final_clip.close()
def truncate_prompt(prompt, tokenizer, max_length=512):
"""Truncate prompt to fit within the maximum token length."""
tokens = tokenizer.tokenize(prompt)
if len(tokens) > max_length:
tokens = tokens[:max_length]
prompt = tokenizer.convert_tokens_to_string(tokens)
return prompt
def generate_images_from_sentences(sentences, image_generator, folder_path):
try:
for i, sentence in enumerate(sentences):
print(f"Generating image for sentence {i + 1}: {sentence}")
image = image_generator(sentence, guidance_scale=7.5).images[0]
image_path = os.path.join(folder_path, f"image_{i + 1}.png")
image.save(image_path)
print(f"Saved image at {image_path}")
except Exception as e:
print("Error! Failed generating images")
print(e)
return []
@spaces.GPU
def predict(
prompt,
language,
audio_file_pth,
normalize_text=True,
use_llm=False, # Thêm tùy chọn sử dụng LLM
content_type="Theo yêu cầu", # Loại nội dung (ví dụ: "triết lý sống" hoặc "Theo yêu cầu")
):
if use_llm:
# Nếu sử dụng LLM, tạo nội dung văn bản từ đầu vào
print("I: Generating text with LLM...")
generated_text = create_content(prompt, content_type, language)
print(f"Generated text: {generated_text}")
prompt = generated_text # Gán văn bản được tạo bởi LLM vào biến prompt
if language not in supported_languages:
metrics_text = gr.Warning(
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
)
return (None, None, metrics_text)
speaker_wav = audio_file_pth
if len(prompt) < 2:
metrics_text = gr.Warning("Please give a longer prompt text")
return (None, None, metrics_text)
try:
metrics_text = ""
t_latent = time.time()
try:
(
gpt_cond_latent,
speaker_embedding,
) = MODEL.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=30,
gpt_cond_chunk_len=4,
max_ref_length=60,
)
except Exception as e:
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"It appears something wrong with reference, did you unmute your microphone?"
)
return (None, None, metrics_text)
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
if normalize_text and language == "vi":
prompt = normalize_vietnamese_text(prompt)
# Truncate prompt to fit within the maximum token length
prompt = truncate_prompt(prompt, tokenizer, max_length=512)
print("I: Generating new audio...")
t0 = time.time()
out = MODEL.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=5.0,
temperature=0.75,
enable_text_splitting=True,
)
inference_time = time.time() - t0
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
metrics_text += (
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
)
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
print(f"Real-time factor (RTF): {real_time_factor}")
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
# Temporary hack for short sentences
keep_len = calculate_keep_len(prompt, language)
out["wav"] = out["wav"][:keep_len]
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
# Tạo video từ file audio và các cảnh
print("I: Generating images from sentences...")
# Sử dụng UUID để tạo tên thư mục ngắn gọn
folder_name = f"video_{uuid.uuid4().hex}"
os.makedirs(folder_name, exist_ok=True)
folder_path = os.path.join(folder_name, "images")
os.makedirs(folder_path, exist_ok=True)
# Tách các câu từ văn bản
sentences = [x.strip() for x in re.split(r'[.!?]', prompt) if len(x.strip()) > 6]
# Tạo ảnh minh họa cho từng câu
images = generate_images_from_sentences(sentences, image_generator, folder_path)
# Tạo video từ file audio và các ảnh
video_path = os.path.join(folder_name, "Final_Ad_Video.mp4")
create_video_from_audio_and_images("output.wav", images, video_path)
print(f"I: Video generated at {video_path}")
metrics_text += f"Video generated at {video_path}\n"
return ("output.wav", video_path, metrics_text)
except RuntimeError as e:
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need to restart
print(
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
error_data = [
error_time,
prompt,
language,
audio_file_pth,
]
error_data = [str(e) if type(e) != str else e for e in error_data]
print(error_data)
print(speaker_wav)
write_io = StringIO()
csv.writer(write_io).writerows([error_data])
csv_upload = write_io.getvalue().encode()
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
print("Writing error csv")
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=csv_upload,
path_in_repo=filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
# speaker_wav
print("Writing error reference audio")
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=speaker_wav,
path_in_repo=speaker_filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
# HF Space specific.. This error is unrecoverable need to restart space
space = api.get_space_runtime(repo_id=repo_id)
if space.stage != "BUILDING":
api.restart_space(repo_id=repo_id)
else:
print("TRIED TO RESTART but space is building")
else:
if "Failed to decode" in str(e):
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"It appears something wrong with reference, did you unmute your microphone?"
)
else:
print("RuntimeError: non device-side assert error:", str(e))
metrics_text = gr.Warning(
"Something unexpected happened please retry again."
)
return (None, None, metrics_text)
except Exception as e:
print("Unexpected error:", str(e))
metrics_text = gr.Warning(
"An unexpected error occurred. Please try again later."
)
return (None, None, metrics_text)
return ("output.wav", None, metrics_text)
# Cập nhật giao diện Gradio
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"""
# tts@TDNM ✨ https://www.tdn-m.com
"""
)
with gr.Column():
# placeholder to align the image
pass
with gr.Row():
with gr.Column():
input_text_gr = gr.Textbox(
label="Text Prompt (Văn bản cần đọc)",
info="Mỗi câu nên từ 10 từ trở lên.",
value="Xin chào, tôi là một mô hình chuyển đổi văn bản thành giọng nói tiếng Việt.",
)
language_gr = gr.Dropdown(
label="Language (Ngôn ngữ)",
choices=[
"vi",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh-cn",
"ja",
"ko",
"hu",
"hi",
],
max_choices=1,
value="vi",
)
normalize_text = gr.Checkbox(
label="Chuẩn hóa văn bản tiếng Việt",
info="Normalize Vietnamese text",
value=True,
)
use_llm_checkbox = gr.Checkbox(
label="Sử dụng LLM để tạo nội dung",
info="Use LLM to generate content",
value=False,
)
content_type_dropdown = gr.Dropdown(
label="Loại nội dung",
choices=["triết lý sống", "Theo yêu cầu"],
value="Theo yêu cầu",
)
ref_gr = gr.Audio(
label="Reference Audio (Giọng mẫu)",
type="filepath",
value="nam-tai-lieu.wav",
)
tts_button = gr.Button(
"Đọc 🗣️🔥",
elem_id="send-btn",
visible=True,
variant="primary",
)
with gr.Column():
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
video_gr = gr.Video(label="Generated Video")
out_text_gr = gr.Text(label="Metrics")
tts_button.click(
predict,
[
input_text_gr,
language_gr,
ref_gr,
normalize_text,
use_llm_checkbox, # Thêm checkbox để bật/tắt LLM
content_type_dropdown, # Thêm dropdown để chọn loại nội dung
],
outputs=[audio_gr, video_gr, out_text_gr],
api_name="predict",
)
demo.queue()
demo.launch(debug=True, show_api=True, share=True)