Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,10 @@ import csv
|
|
2 |
import datetime
|
3 |
import os
|
4 |
import re
|
|
|
5 |
import time
|
6 |
import uuid
|
7 |
-
from io import StringIO
|
8 |
import gradio as gr
|
9 |
import spaces
|
10 |
import torch
|
@@ -14,13 +15,20 @@ from TTS.tts.configs.xtts_config import XttsConfig
|
|
14 |
from TTS.tts.models.xtts import Xtts
|
15 |
from vinorm import TTSnorm
|
16 |
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
os.system("python -m unidic download")
|
|
|
|
|
20 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
21 |
api = HfApi(token=HF_TOKEN)
|
22 |
|
23 |
-
#
|
24 |
print("Downloading if not downloaded viXTTS")
|
25 |
checkpoint_dir = "model/"
|
26 |
repo_id = "capleaf/viXTTS"
|
@@ -39,6 +47,7 @@ if not all(file in files_in_dir for file in required_files):
|
|
39 |
filename="speakers_xtts.pth",
|
40 |
local_dir=checkpoint_dir,
|
41 |
)
|
|
|
42 |
xtts_config = os.path.join(checkpoint_dir, "config.json")
|
43 |
config = XttsConfig()
|
44 |
config.load_json(xtts_config)
|
@@ -48,10 +57,12 @@ MODEL.load_checkpoint(
|
|
48 |
)
|
49 |
if torch.cuda.is_available():
|
50 |
MODEL.cuda()
|
|
|
51 |
supported_languages = config.languages
|
52 |
-
if
|
53 |
supported_languages.append("vi")
|
54 |
|
|
|
55 |
def normalize_vietnamese_text(text):
|
56 |
text = (
|
57 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
@@ -68,6 +79,7 @@ def normalize_vietnamese_text(text):
|
|
68 |
)
|
69 |
return text
|
70 |
|
|
|
71 |
def calculate_keep_len(text, lang):
|
72 |
"""Simple hack for short sentences"""
|
73 |
if lang in ["ja", "zh-cn"]:
|
@@ -80,33 +92,166 @@ def calculate_keep_len(text, lang):
|
|
80 |
return 13000 * word_count + 2000 * num_punct
|
81 |
return -1
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
@spaces.GPU
|
84 |
def predict(
|
85 |
prompt,
|
86 |
language,
|
87 |
audio_file_pth,
|
88 |
normalize_text=True,
|
89 |
-
use_llm=False,
|
90 |
-
content_type="Theo yêu cầu",
|
91 |
):
|
92 |
if use_llm:
|
93 |
-
# Nếu sử dụng LLM, tạo nội dung văn bản từ đầu vào
|
94 |
print("I: Generating text with LLM...")
|
95 |
generated_text = create_content(prompt, content_type, language)
|
96 |
print(f"Generated text: {generated_text}")
|
97 |
-
prompt = generated_text
|
98 |
-
|
99 |
if language not in supported_languages:
|
100 |
metrics_text = gr.Warning(
|
101 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
102 |
)
|
103 |
return (None, metrics_text)
|
104 |
-
|
105 |
speaker_wav = audio_file_pth
|
106 |
if len(prompt) < 2:
|
107 |
metrics_text = gr.Warning("Please give a longer prompt text")
|
108 |
return (None, metrics_text)
|
109 |
-
|
110 |
try:
|
111 |
metrics_text = ""
|
112 |
t_latent = time.time()
|
@@ -126,7 +271,6 @@ def predict(
|
|
126 |
"It appears something wrong with reference, did you unmute your microphone?"
|
127 |
)
|
128 |
return (None, metrics_text)
|
129 |
-
|
130 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
131 |
if normalize_text and language == "vi":
|
132 |
prompt = normalize_vietnamese_text(prompt)
|
@@ -149,14 +293,11 @@ def predict(
|
|
149 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
150 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
151 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
152 |
-
|
153 |
-
# Temporary hack for short sentences
|
154 |
keep_len = calculate_keep_len(prompt, language)
|
155 |
out["wav"] = out["wav"][:keep_len]
|
156 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
157 |
except RuntimeError as e:
|
158 |
if "device-side assert" in str(e):
|
159 |
-
# cannot do anything on cuda device side error, need to restart
|
160 |
print(
|
161 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
162 |
flush=True,
|
@@ -185,8 +326,6 @@ def predict(
|
|
185 |
repo_id="coqui/xtts-flagged-dataset",
|
186 |
repo_type="dataset",
|
187 |
)
|
188 |
-
# speaker_wav
|
189 |
-
print("Writing error reference audio")
|
190 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
191 |
error_api = HfApi()
|
192 |
error_api.upload_file(
|
@@ -195,7 +334,6 @@ def predict(
|
|
195 |
repo_id="coqui/xtts-flagged-dataset",
|
196 |
repo_type="dataset",
|
197 |
)
|
198 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
199 |
space = api.get_space_runtime(repo_id=repo_id)
|
200 |
if space.stage != "BUILDING":
|
201 |
api.restart_space(repo_id=repo_id)
|
@@ -215,7 +353,7 @@ def predict(
|
|
215 |
return (None, metrics_text)
|
216 |
return ("output.wav", metrics_text)
|
217 |
|
218 |
-
#
|
219 |
with gr.Blocks(analytics_enabled=False) as demo:
|
220 |
with gr.Row():
|
221 |
with gr.Column():
|
@@ -225,9 +363,8 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
225 |
"""
|
226 |
)
|
227 |
with gr.Column():
|
228 |
-
# placeholder to align the image
|
229 |
pass
|
230 |
-
|
231 |
with gr.Row():
|
232 |
with gr.Column():
|
233 |
input_text_gr = gr.Textbox(
|
@@ -238,24 +375,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
238 |
language_gr = gr.Dropdown(
|
239 |
label="Language (Ngôn ngữ)",
|
240 |
choices=[
|
241 |
-
"vi",
|
242 |
-
"en",
|
243 |
-
"es",
|
244 |
-
"fr",
|
245 |
-
"de",
|
246 |
-
"it",
|
247 |
-
"pt",
|
248 |
-
"pl",
|
249 |
-
"tr",
|
250 |
-
"ru",
|
251 |
-
"nl",
|
252 |
-
"cs",
|
253 |
-
"ar",
|
254 |
-
"zh-cn",
|
255 |
-
"ja",
|
256 |
-
"ko",
|
257 |
-
"hu",
|
258 |
-
"hi",
|
259 |
],
|
260 |
max_choices=1,
|
261 |
value="vi",
|
@@ -286,11 +406,14 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
286 |
visible=True,
|
287 |
variant="primary",
|
288 |
)
|
289 |
-
|
290 |
with gr.Column():
|
291 |
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
|
292 |
out_text_gr = gr.Text(label="Metrics")
|
293 |
-
|
|
|
|
|
|
|
294 |
tts_button.click(
|
295 |
predict,
|
296 |
[
|
@@ -298,11 +421,20 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
298 |
language_gr,
|
299 |
ref_gr,
|
300 |
normalize_text,
|
301 |
-
use_llm_checkbox,
|
302 |
-
content_type_dropdown,
|
303 |
],
|
304 |
outputs=[audio_gr, out_text_gr],
|
305 |
api_name="predict",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
)
|
307 |
|
308 |
demo.queue()
|
|
|
2 |
import datetime
|
3 |
import os
|
4 |
import re
|
5 |
+
import subprocess
|
6 |
import time
|
7 |
import uuid
|
8 |
+
from io import BytesIO, StringIO
|
9 |
import gradio as gr
|
10 |
import spaces
|
11 |
import torch
|
|
|
15 |
from TTS.tts.models.xtts import Xtts
|
16 |
from vinorm import TTSnorm
|
17 |
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
|
18 |
+
from PIL import Image
|
19 |
+
from pathlib import Path
|
20 |
+
import requests
|
21 |
+
import json
|
22 |
+
import hashlib
|
23 |
|
24 |
+
# Download for mecab
|
25 |
os.system("python -m unidic download")
|
26 |
+
|
27 |
+
# Cấu hình API và mô hình
|
28 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
29 |
api = HfApi(token=HF_TOKEN)
|
30 |
|
31 |
+
# Tải mô hình viXTTS
|
32 |
print("Downloading if not downloaded viXTTS")
|
33 |
checkpoint_dir = "model/"
|
34 |
repo_id = "capleaf/viXTTS"
|
|
|
47 |
filename="speakers_xtts.pth",
|
48 |
local_dir=checkpoint_dir,
|
49 |
)
|
50 |
+
|
51 |
xtts_config = os.path.join(checkpoint_dir, "config.json")
|
52 |
config = XttsConfig()
|
53 |
config.load_json(xtts_config)
|
|
|
57 |
)
|
58 |
if torch.cuda.is_available():
|
59 |
MODEL.cuda()
|
60 |
+
|
61 |
supported_languages = config.languages
|
62 |
+
if "vi" not in supported_languages:
|
63 |
supported_languages.append("vi")
|
64 |
|
65 |
+
# Hàm chuẩn hóa văn bản tiếng Việt
|
66 |
def normalize_vietnamese_text(text):
|
67 |
text = (
|
68 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
|
|
79 |
)
|
80 |
return text
|
81 |
|
82 |
+
# Hàm tính toán độ dài giữ lại cho audio ngắn
|
83 |
def calculate_keep_len(text, lang):
|
84 |
"""Simple hack for short sentences"""
|
85 |
if lang in ["ja", "zh-cn"]:
|
|
|
92 |
return 13000 * word_count + 2000 * num_punct
|
93 |
return -1
|
94 |
|
95 |
+
# Hàm tạo mô tả ảnh từ nội dung audio
|
96 |
+
def generate_image_description(prompt):
|
97 |
+
return f"A visual representation of: {prompt}"
|
98 |
+
|
99 |
+
# Hàm gọi API tạo ảnh
|
100 |
+
def txt2img(prompt, width, height):
|
101 |
+
model_id = "770694094415489962" # Model ID cố định
|
102 |
+
vae_id = "sdxl-vae-fp16-fix.safetensors" # VAE cố định
|
103 |
+
lora_items = [
|
104 |
+
{"loraModel": "766419665653268679", "weight": 0.7},
|
105 |
+
{"loraModel": "777630084346589138", "weight": 0.7},
|
106 |
+
{"loraModel": "776587863287492519", "weight": 0.7}
|
107 |
+
]
|
108 |
+
txt2img_data = {
|
109 |
+
"request_id": hashlib.md5(str(int(time.time())).encode()).hexdigest(),
|
110 |
+
"stages": [
|
111 |
+
{
|
112 |
+
"type": "INPUT_INITIALIZE",
|
113 |
+
"inputInitialize": {
|
114 |
+
"seed": -1,
|
115 |
+
"count": 1
|
116 |
+
}
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"type": "DIFFUSION",
|
120 |
+
"diffusion": {
|
121 |
+
"width": width,
|
122 |
+
"height": height,
|
123 |
+
"prompts": [
|
124 |
+
{
|
125 |
+
"text": prompt
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"negativePrompts": [
|
129 |
+
{
|
130 |
+
"text": "nsfw"
|
131 |
+
}
|
132 |
+
],
|
133 |
+
"sdModel": model_id,
|
134 |
+
"sdVae": vae_id,
|
135 |
+
"sampler": "Euler a",
|
136 |
+
"steps": 20,
|
137 |
+
"cfgScale": 3,
|
138 |
+
"clipSkip": 1,
|
139 |
+
"etaNoiseSeedDelta": 31337,
|
140 |
+
"lora": {
|
141 |
+
"items": lora_items
|
142 |
+
}
|
143 |
+
}
|
144 |
+
}
|
145 |
+
]
|
146 |
+
}
|
147 |
+
body = json.dumps(txt2img_data)
|
148 |
+
headers = {
|
149 |
+
'Content-Type': 'application/json',
|
150 |
+
'Accept': 'application/json',
|
151 |
+
'Authorization': f'Bearer {os.getenv("api_key_token")}'
|
152 |
+
}
|
153 |
+
response = requests.post(f"https://ap-east-1.tensorart.cloud/v1/jobs", json=txt2img_data, headers=headers)
|
154 |
+
if response.status_code != 200:
|
155 |
+
return f"Error: {response.status_code} - {response.text}"
|
156 |
+
response_data = response.json()
|
157 |
+
job_id = response_data['job']['id']
|
158 |
+
print(f"Job created. ID: {job_id}")
|
159 |
+
start_time = time.time()
|
160 |
+
timeout = 300 # Giới hạn thời gian chờ là 300 giây (5 phút)
|
161 |
+
while True:
|
162 |
+
time.sleep(10)
|
163 |
+
elapsed_time = time.time() - start_time
|
164 |
+
if elapsed_time > timeout:
|
165 |
+
return f"Error: Job timed out after {timeout} seconds."
|
166 |
+
response = requests.get(f"https://ap-east-1.tensorart.cloud/v1/jobs/{job_id}", headers=headers)
|
167 |
+
if response.status_code != 200:
|
168 |
+
return f"Error: {response.status_code} - {response.text}"
|
169 |
+
get_job_response_data = response.json()
|
170 |
+
job_status = get_job_response_data['job']['status']
|
171 |
+
print(f"Job status: {job_status}")
|
172 |
+
if job_status == 'SUCCESS':
|
173 |
+
if 'successInfo' in get_job_response_data['job']:
|
174 |
+
image_url = get_job_response_data['job']['successInfo']['images'][0]['url']
|
175 |
+
print(f"Job succeeded. Image URL: {image_url}")
|
176 |
+
response_image = requests.get(image_url)
|
177 |
+
img = Image.open(BytesIO(response_image.content))
|
178 |
+
return img
|
179 |
+
else:
|
180 |
+
return "Error: Output is missing in the job response."
|
181 |
+
elif job_status == 'FAILED':
|
182 |
+
return "Error: Job failed. Please try again with different settings."
|
183 |
+
|
184 |
+
# Hàm tạo video từ ảnh và audio
|
185 |
+
def create_video(image_path, audio_path, output_path):
|
186 |
+
command = [
|
187 |
+
"ffmpeg",
|
188 |
+
"-i", image_path,
|
189 |
+
"-i", audio_path,
|
190 |
+
"-filter_complex",
|
191 |
+
"[1:a]aformat=channel_layouts=mono,showwaves=s=800x250:mode=line:[email protected][w];[0:v][w]overlay=(W-w)/2:(H-h)/2",
|
192 |
+
"-c:v", "libx264",
|
193 |
+
"-c:a", "aac",
|
194 |
+
"-y", output_path
|
195 |
+
]
|
196 |
+
subprocess.run(command, check=True)
|
197 |
+
|
198 |
+
# Hàm xử lý sự kiện khi nhấn nút "Tạo Video"
|
199 |
+
def generate_video(audio_file, prompt):
|
200 |
+
if not os.path.exists(audio_file):
|
201 |
+
return None, "Audio file not found. Please generate audio first."
|
202 |
+
|
203 |
+
# Bước 1: Tạo mô tả ảnh
|
204 |
+
image_description = generate_image_description(prompt)
|
205 |
+
|
206 |
+
# Bước 2: Gọi API tạo ảnh
|
207 |
+
try:
|
208 |
+
image = txt2img(image_description, width=800, height=600)
|
209 |
+
if isinstance(image, str): # Nếu có lỗi từ API
|
210 |
+
return None, image
|
211 |
+
|
212 |
+
# Lưu ảnh vào thư mục
|
213 |
+
image_path = os.path.join(SAVE_DIR, "generated_image.png")
|
214 |
+
image.save(image_path)
|
215 |
+
except Exception as e:
|
216 |
+
return None, f"Error generating image: {str(e)}"
|
217 |
+
|
218 |
+
# Bước 3: Tạo video từ ảnh và audio
|
219 |
+
video_output_path = os.path.join(SAVE_DIR, "output_video.mp4")
|
220 |
+
try:
|
221 |
+
create_video(image_path, audio_file, video_output_path)
|
222 |
+
except Exception as e:
|
223 |
+
return None, f"Error creating video: {str(e)}"
|
224 |
+
|
225 |
+
return video_output_path, "Video created successfully!"
|
226 |
+
|
227 |
+
# Thư mục lưu trữ ảnh và video
|
228 |
+
SAVE_DIR = "generated_images"
|
229 |
+
Path(SAVE_DIR).mkdir(exist_ok=True)
|
230 |
+
|
231 |
+
# Hàm dự đoán và tạo audio
|
232 |
@spaces.GPU
|
233 |
def predict(
|
234 |
prompt,
|
235 |
language,
|
236 |
audio_file_pth,
|
237 |
normalize_text=True,
|
238 |
+
use_llm=False,
|
239 |
+
content_type="Theo yêu cầu",
|
240 |
):
|
241 |
if use_llm:
|
|
|
242 |
print("I: Generating text with LLM...")
|
243 |
generated_text = create_content(prompt, content_type, language)
|
244 |
print(f"Generated text: {generated_text}")
|
245 |
+
prompt = generated_text
|
|
|
246 |
if language not in supported_languages:
|
247 |
metrics_text = gr.Warning(
|
248 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
249 |
)
|
250 |
return (None, metrics_text)
|
|
|
251 |
speaker_wav = audio_file_pth
|
252 |
if len(prompt) < 2:
|
253 |
metrics_text = gr.Warning("Please give a longer prompt text")
|
254 |
return (None, metrics_text)
|
|
|
255 |
try:
|
256 |
metrics_text = ""
|
257 |
t_latent = time.time()
|
|
|
271 |
"It appears something wrong with reference, did you unmute your microphone?"
|
272 |
)
|
273 |
return (None, metrics_text)
|
|
|
274 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
275 |
if normalize_text and language == "vi":
|
276 |
prompt = normalize_vietnamese_text(prompt)
|
|
|
293 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
294 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
295 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
|
|
|
|
296 |
keep_len = calculate_keep_len(prompt, language)
|
297 |
out["wav"] = out["wav"][:keep_len]
|
298 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
299 |
except RuntimeError as e:
|
300 |
if "device-side assert" in str(e):
|
|
|
301 |
print(
|
302 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
303 |
flush=True,
|
|
|
326 |
repo_id="coqui/xtts-flagged-dataset",
|
327 |
repo_type="dataset",
|
328 |
)
|
|
|
|
|
329 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
330 |
error_api = HfApi()
|
331 |
error_api.upload_file(
|
|
|
334 |
repo_id="coqui/xtts-flagged-dataset",
|
335 |
repo_type="dataset",
|
336 |
)
|
|
|
337 |
space = api.get_space_runtime(repo_id=repo_id)
|
338 |
if space.stage != "BUILDING":
|
339 |
api.restart_space(repo_id=repo_id)
|
|
|
353 |
return (None, metrics_text)
|
354 |
return ("output.wav", metrics_text)
|
355 |
|
356 |
+
# Giao diện Gradio
|
357 |
with gr.Blocks(analytics_enabled=False) as demo:
|
358 |
with gr.Row():
|
359 |
with gr.Column():
|
|
|
363 |
"""
|
364 |
)
|
365 |
with gr.Column():
|
|
|
366 |
pass
|
367 |
+
|
368 |
with gr.Row():
|
369 |
with gr.Column():
|
370 |
input_text_gr = gr.Textbox(
|
|
|
375 |
language_gr = gr.Dropdown(
|
376 |
label="Language (Ngôn ngữ)",
|
377 |
choices=[
|
378 |
+
"vi", "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "ko", "hu", "hi",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
],
|
380 |
max_choices=1,
|
381 |
value="vi",
|
|
|
406 |
visible=True,
|
407 |
variant="primary",
|
408 |
)
|
409 |
+
|
410 |
with gr.Column():
|
411 |
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
|
412 |
out_text_gr = gr.Text(label="Metrics")
|
413 |
+
video_button = gr.Button("Tạo Video 🎥", visible=False)
|
414 |
+
video_output = gr.Video(label="Generated Video", visible=False)
|
415 |
+
video_status = gr.Text(label="Video Status")
|
416 |
+
|
417 |
tts_button.click(
|
418 |
predict,
|
419 |
[
|
|
|
421 |
language_gr,
|
422 |
ref_gr,
|
423 |
normalize_text,
|
424 |
+
use_llm_checkbox,
|
425 |
+
content_type_dropdown,
|
426 |
],
|
427 |
outputs=[audio_gr, out_text_gr],
|
428 |
api_name="predict",
|
429 |
+
).then(
|
430 |
+
lambda: [gr.update(visible=True)],
|
431 |
+
outputs=[video_button]
|
432 |
+
)
|
433 |
+
|
434 |
+
video_button.click(
|
435 |
+
generate_video,
|
436 |
+
inputs=[audio_gr, input_text_gr],
|
437 |
+
outputs=[video_output, video_status],
|
438 |
)
|
439 |
|
440 |
demo.queue()
|