Update app.py
Browse files
app.py
CHANGED
@@ -15,8 +15,7 @@ from TTS.tts.models.xtts import Xtts
|
|
15 |
from vinorm import TTSnorm
|
16 |
from langchain_community.llms import HuggingFacePipeline
|
17 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
18 |
-
from
|
19 |
-
from PIL import Image
|
20 |
import cv2
|
21 |
from moviepy.editor import AudioFileClip, ImageSequenceClip
|
22 |
import gc
|
@@ -73,12 +72,6 @@ llm_chain = caption_chain.chain(llm=local_llm)
|
|
73 |
sum_llm_chain = tag_chain.chain(llm=local_llm)
|
74 |
pexels_api_key = os.getenv('pexels_api_key')
|
75 |
|
76 |
-
# Initialize Stable Diffusion Pipeline with TDN-M/East-asian-beauty
|
77 |
-
image_gen_model_id = "TDN-M/East-asian-beauty"
|
78 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
79 |
-
image_generator = StableDiffusionPipeline.from_pretrained(image_gen_model_id, torch_dtype=torch.float16)
|
80 |
-
image_generator = image_generator.to(device)
|
81 |
-
|
82 |
def normalize_vietnamese_text(text):
|
83 |
text = (
|
84 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
@@ -134,13 +127,22 @@ def truncate_prompt(prompt, tokenizer, max_length=512):
|
|
134 |
prompt = tokenizer.convert_tokens_to_string(tokens)
|
135 |
return prompt
|
136 |
|
137 |
-
def generate_images_from_sentences(sentences
|
138 |
try:
|
|
|
139 |
for i, sentence in enumerate(sentences):
|
140 |
print(f"Generating image for sentence {i + 1}: {sentence}")
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
image_path = os.path.join(folder_path, f"image_{i + 1}.png")
|
143 |
-
|
144 |
print(f"Saved image at {image_path}")
|
145 |
except Exception as e:
|
146 |
print("Error! Failed generating images")
|
@@ -238,7 +240,7 @@ def predict(
|
|
238 |
sentences = [x.strip() for x in re.split(r'[.!?]', prompt) if len(x.strip()) > 6]
|
239 |
|
240 |
# Tạo ảnh minh họa cho từng câu
|
241 |
-
images = generate_images_from_sentences(sentences
|
242 |
|
243 |
# Tạo video từ file audio và các ảnh
|
244 |
video_path = os.path.join(folder_name, "Final_Ad_Video.mp4")
|
|
|
15 |
from vinorm import TTSnorm
|
16 |
from langchain_community.llms import HuggingFacePipeline
|
17 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
18 |
+
from gradio_client import Client
|
|
|
19 |
import cv2
|
20 |
from moviepy.editor import AudioFileClip, ImageSequenceClip
|
21 |
import gc
|
|
|
72 |
sum_llm_chain = tag_chain.chain(llm=local_llm)
|
73 |
pexels_api_key = os.getenv('pexels_api_key')
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def normalize_vietnamese_text(text):
|
76 |
text = (
|
77 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
|
|
127 |
prompt = tokenizer.convert_tokens_to_string(tokens)
|
128 |
return prompt
|
129 |
|
130 |
+
def generate_images_from_sentences(sentences):
|
131 |
try:
|
132 |
+
client = Client("ByteDance/Hyper-FLUX-8Steps-LoRA")
|
133 |
for i, sentence in enumerate(sentences):
|
134 |
print(f"Generating image for sentence {i + 1}: {sentence}")
|
135 |
+
result = client.predict(
|
136 |
+
height=1024,
|
137 |
+
width=1024,
|
138 |
+
steps=8,
|
139 |
+
scales=3.5,
|
140 |
+
prompt=sentence,
|
141 |
+
seed=3413,
|
142 |
+
api_name="/process_image"
|
143 |
+
)
|
144 |
image_path = os.path.join(folder_path, f"image_{i + 1}.png")
|
145 |
+
result.save(image_path)
|
146 |
print(f"Saved image at {image_path}")
|
147 |
except Exception as e:
|
148 |
print("Error! Failed generating images")
|
|
|
240 |
sentences = [x.strip() for x in re.split(r'[.!?]', prompt) if len(x.strip()) > 6]
|
241 |
|
242 |
# Tạo ảnh minh họa cho từng câu
|
243 |
+
images = generate_images_from_sentences(sentences)
|
244 |
|
245 |
# Tạo video từ file audio và các ảnh
|
246 |
video_path = os.path.join(folder_name, "Final_Ad_Video.mp4")
|