Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +61 -0
- best.pt +3 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the model from local path
|
10 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
|
11 |
+
|
12 |
+
def detect_fall(image):
|
13 |
+
results = model(image)
|
14 |
+
return results
|
15 |
+
|
16 |
+
def main():
|
17 |
+
st.title("Fall Detection Application")
|
18 |
+
|
19 |
+
option = st.sidebar.selectbox("Choose input type", ("Upload Image/Video", "Use Camera"))
|
20 |
+
|
21 |
+
if option == "Upload Image/Video":
|
22 |
+
uploaded_file = st.file_uploader("Upload Image or Video", type=['jpg', 'jpeg', 'png', 'mp4', 'avi', 'mov'])
|
23 |
+
if uploaded_file is not None:
|
24 |
+
if uploaded_file.type.startswith('image'):
|
25 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
26 |
+
image = cv2.imdecode(file_bytes, 1)
|
27 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
28 |
+
results = detect_fall(image)
|
29 |
+
st.image(np.squeeze(results.render()), caption='Processed Image.', use_column_width=True)
|
30 |
+
elif uploaded_file.type.startswith('video'):
|
31 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
32 |
+
tfile.write(uploaded_file.read())
|
33 |
+
tfile.close()
|
34 |
+
st.write(f'Temporary file path: {tfile.name}')
|
35 |
+
vidcap = cv2.VideoCapture(tfile.name)
|
36 |
+
stframe = st.empty()
|
37 |
+
|
38 |
+
while vidcap.isOpened():
|
39 |
+
success, frame = vidcap.read()
|
40 |
+
if not success:
|
41 |
+
break
|
42 |
+
results = detect_fall(frame)
|
43 |
+
processed_frame = np.squeeze(results.render())
|
44 |
+
stframe.image(processed_frame, channels="BGR")
|
45 |
+
vidcap.release()
|
46 |
+
os.remove(tfile.name)
|
47 |
+
|
48 |
+
elif option == "Use Camera":
|
49 |
+
stframe = st.empty()
|
50 |
+
cap = cv2.VideoCapture(0)
|
51 |
+
while True:
|
52 |
+
ret, frame = cap.read()
|
53 |
+
if not ret:
|
54 |
+
break
|
55 |
+
results = detect_fall(frame)
|
56 |
+
processed_frame = np.squeeze(results.render())
|
57 |
+
stframe.image(processed_frame, channels="BGR")
|
58 |
+
cap.release()
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
main()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c9ca74475ce6228480fa8adf90d09c808e858cc54ff6c5a752b5bb294f912dc
|
3 |
+
size 14465461
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
opencv-python-headless
|
4 |
+
numpy
|
5 |
+
pillow
|