Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 10,727 Bytes
			
			324a80e  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258  | 
								from Models import Models
from ResumeSegmenter import ResumeSegmenter
from datetime import datetime
from dateutil import parser
import re
from string import punctuation
class ResumeParser:
    def __init__(self, ner, ner_dates, zero_shot_classifier, tagger):
        self.models = Models()
        self.segmenter = ResumeSegmenter(zero_shot_classifier)
        self.ner, self.ner_dates, self.zero_shot_classifier, self.tagger = ner, ner_dates, zero_shot_classifier, tagger 
        self.parsed_cv = {}
    def parse(self, resume_lines):
        resume_segments = self.segmenter.segment(resume_lines)
        print("***************************** Parsing the Resume...***************************** ")
        for segment_name in resume_segments:
            if segment_name == "work_and_employment":
                resume_segment = resume_segments[segment_name]
                self.parse_job_history(resume_segment)
            elif segment_name == "contact_info":
                contact_info = resume_segments[segment_name]
                self.parse_contact_info(contact_info)
            elif segment_name == "education_and_training":
                education_and_training = resume_segments[segment_name]
                self.parse_education(education_and_training)
            elif segment_name == "skills_header":
                skills_header = resume_segments[segment_name]
                self.parse_skills(skills_header)
                print("************************************** SKILLS HEADER ***************************** <br>",skills_header)
        return self.parsed_cv
    def parse_education(self, education_and_training):
        print(education_and_training)
        self.parsed_cv['Education'] = education_and_training
    def parse_skills(self, skills_header):
        self.parsed_cv['Skills'] = skills_header
    def parse_contact_info(self, contact_info):
        contact_info_dict = {}
        name = self.find_person_name(contact_info)
        email = self.find_contact_email(contact_info)
        self.parsed_cv['Name'] = name
        contact_info_dict["Email"] = email
        self.parsed_cv['Contact Info'] = contact_info_dict
    def find_person_name(self, items):
        class_score = []
        splitter = re.compile(r'[{}]+'.format(re.escape(punctuation.replace("&", "") )))
        classes = ["person name", "address", "email", "title"]
        for item in items: 
            elements = splitter.split(item)
            for element in elements:
                element = ''.join(i for i in element.strip() if not i.isdigit())
                if not len(element.strip().split()) > 1: continue
                out = self.zero_shot_classifier(element, classes)
                highest = sorted(zip(out["labels"], out["scores"]), key=lambda x: x[1])[-1]
                if highest[0] == "person name":
                    class_score.append((element, highest[1]))
        if len(class_score):
            return sorted(class_score, key=lambda x: x[1], reverse=True)[0][0]
        return ""
    
    def find_contact_email(self, items):
        for item in items: 
            match = re.search(r'[\w.+-]+@[\w-]+\.[\w.-]+', item)
            if match:
                return match.group(0)
        return ""
    def parse_job_history(self, resume_segment):
        idx_job_title = self.get_job_titles(resume_segment)
        current_and_below = False
        if not len(idx_job_title): 
            self.parsed_cv["Job History"] = [] 
            return
        if idx_job_title[0][0] == 0: current_and_below = True
        job_history = []
        for ls_idx, (idx, job_title) in enumerate(idx_job_title): 
            job_info = {}
            # print("<br> Job Title: ",job_title)
            job_info["Job Title"] = self.filter_job_title(job_title) 
            # company 
            if current_and_below: line1, line2 = idx, idx+1
            else: line1, line2 = idx, idx-1 
            job_info["Company"] = self.get_job_company(line1, line2, resume_segment)
            if current_and_below: st_span = idx
            else: st_span = idx-1
            # Dates 
            if ls_idx == len(idx_job_title) - 1: end_span = len(resume_segment) 
            else: end_span = idx_job_title[ls_idx+1][0]
            start, end = self.get_job_dates(st_span, end_span, resume_segment)
            job_info["Start Date"] = start
            job_info["End Date"] = end
            # if(start != "" and end != ""):
            job_history.append(job_info)
        self.parsed_cv["Job History"] = job_history 
    def get_job_titles(self, resume_segment):
        classes = ["organization", "institution", "company", "job title", "work details"]
        idx_line = []
        for idx, line in enumerate(resume_segment):
            has_verb = False
            line_modifed = ''.join(i for i in line if not i.isdigit())
            sentence = self.models.get_flair_sentence(line_modifed)
            self.tagger.predict(sentence)
            tags = []
            for entity in sentence.get_spans('pos'):
                tags.append(entity.tag)
                if entity.tag.startswith("V"): 
                    has_verb = True
            most_common_tag = max(set(tags), key=tags.count)
            if (most_common_tag == "NNP") or (most_common_tag == "NN"):
            # if most_common_tag == "NNP":
                if not has_verb:
                    out = self.zero_shot_classifier(line, classes)
                    class_score = zip(out["labels"], out["scores"])
                    highest = sorted(class_score, key=lambda x: x[1])[-1]
                    if (highest[0] == "job title") or (highest[0] == "organization"):
                    # if highest[0] == "job title":
                        idx_line.append((idx, line))
        return idx_line
    def get_job_dates(self, st, end, resume_segment):
        search_span = resume_segment[st:end]
        dates = []
        for line in search_span:
            for dt in self.get_ner_in_line(line, "DATE"):
                if self.isvalidyear(dt.strip()):
                    dates.append(dt)
        if len(dates): first = dates[0]
        exists_second = False
        if len(dates) > 1:
            exists_second = True
            second = dates[1]
        
        if len(dates) > 0:
            if self.has_two_dates(first):
                d1, d2 = self.get_two_dates(first)
                return self.format_date(d1), self.format_date(d2)
            elif exists_second and self.has_two_dates(second): 
                d1, d2 = self.get_two_dates(second)
                return self.format_date(d1), self.format_date(d2)
            else: 
                if exists_second: 
                    st = self.format_date(first)
                    end = self.format_date(second)
                    return st, end
                else: 
                    return (self.format_date(first), "") 
        else: return ("", "")
    
    
    def filter_job_title(self, job_title):
        job_title_splitter = re.compile(r'[{}]+'.format(re.escape(punctuation.replace("&", "") )))
        job_title = ''.join(i for i in job_title if not i.isdigit())
        tokens = job_title_splitter.split(job_title)
        tokens = [''.join([i for i in tok.strip() if (i.isalpha() or i.strip()=="")]) for tok in tokens if tok.strip()] 
        classes = ["company", "organization", "institution", "job title", "responsibility",  "details"]
        new_title = []
        for token in tokens:
            if not token: continue
            res = self.zero_shot_classifier(token, classes)
            class_score = zip(res["labels"], res["scores"])
            highest = sorted(class_score, key=lambda x: x[1])[-1]
            if (highest[0] == "job title") or (highest[0] == "organization"):
            # if highest[0] == "job title":
                new_title.append(token.strip())
        if len(new_title):
            return ', '.join(new_title)
        else: return ', '.join(tokens)
    def has_two_dates(self, date):
        years = self.get_valid_years()
        count = 0
        for year in years:
            if year in str(date):
                count+=1
        return count == 2
    
    def get_two_dates(self, date):
        years = self.get_valid_years()
        idxs = []
        for year in years:
            if year in date: 
                idxs.append(date.index(year))
        min_idx = min(idxs)  
        first = date[:min_idx+4]
        second = date[min_idx+4:]
        return first, second
    def get_valid_years(self):
        current_year = datetime.today().year
        years = [str(i) for i in range(current_year-100, current_year)]
        return years
    def format_date(self, date):
        out = self.parse_date(date)
        if out: 
            return out
        else: 
            date = self.clean_date(date)
            out = self.parse_date(date)
            if out: 
                return out
            else: 
                return date
    def clean_date(self, date): 
        try:
            date = ''.join(i for i in date if i.isalnum() or i =='-' or i == '/')
            return date
        except:
            return date
    def parse_date(self, date):
        try:
            date = parser.parse(date)
            return date.strftime("%m-%Y")
        except: 
            try:
                date = datetime(date)
                return date.strftime("%m-%Y")
            except: 
                return 0 
    def isvalidyear(self, date):
        current_year = datetime.today().year
        years = [str(i) for i in range(current_year-100, current_year)]
        for year in years:
            if year in str(date):
                return True 
        return False
    def get_ner_in_line(self, line, entity_type):
        if entity_type == "DATE": ner = self.ner_dates
        else: ner = self.ner
        return [i['word'] for i in ner(line) if i['entity_group'] == entity_type]
        
    def get_job_company(self, idx, idx1, resume_segment):
        job_title = resume_segment[idx]
        if not idx1 <= len(resume_segment)-1: context = ""
        else:context = resume_segment[idx1]
        candidate_companies = self.get_ner_in_line(job_title, "ORG") + self.get_ner_in_line(context, "ORG")
        classes = ["organization", "company", "institution", "not organization", "not company", "not institution"]
        scores = []
        for comp in candidate_companies:
            res = self.zero_shot_classifier(comp, classes)['scores']
            scores.append(max(res[:3]))
        sorted_cmps = sorted(zip(candidate_companies, scores), key=lambda x: x[1], reverse=True)
        if len(sorted_cmps): return sorted_cmps[0][0]
        return context |