File size: 7,987 Bytes
8c6fff2
 
 
c5ee948
8c6fff2
 
c5ee948
 
 
 
 
8c6fff2
f870c02
8c6fff2
 
c5ee948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c6fff2
c5ee948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c6fff2
c5ee948
 
f870c02
c5ee948
 
 
 
 
f870c02
8c6fff2
 
c5ee948
 
8c6fff2
 
 
c5ee948
8c6fff2
 
c5ee948
 
8c6fff2
c5ee948
 
 
 
 
8c6fff2
f870c02
 
 
 
 
 
 
 
 
 
8c6fff2
 
 
c5ee948
8c6fff2
 
 
 
c5ee948
8c6fff2
 
 
 
c5ee948
8c6fff2
 
 
 
c5ee948
8c6fff2
 
 
 
f870c02
8c6fff2
c5ee948
8c6fff2
f870c02
8c6fff2
 
f870c02
c5ee948
 
f870c02
8c6fff2
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import anthropic
import pandas as pd
from typing import Tuple, Dict, List
from youtube_transcript_api import YouTubeTranscriptApi
import re
from pathlib import Path
import asyncio
import concurrent.futures
from dataclasses import dataclass
import time

# Initialize Anthropic client
client = anthropic.Anthropic()

@dataclass
class ContentRequest:
    prompt_key: str
    max_tokens: int = 2000
    temperature: float = 0.6

class TranscriptProcessor:
    def __init__(self):
        self.current_prompts = self._load_default_prompts()
        
    def _load_default_prompts(self) -> Dict[str, str]:
        """Load default prompts from files."""
        return {
            key: Path(f"prompts/{key}.txt").read_text()
            for key in ["clips", "description", "timestamps", "titles_and_thumbnails"]
        }

    def _load_examples(self, filename: str, columns: List[str]) -> str:
        """Load examples from CSV file."""
        try:
            df = pd.read_csv(f"data/{filename}")
            if len(columns) == 1:
                return "\n\n".join(df[columns[0]].dropna().tolist())
            
            examples = []
            for _, row in df.iterrows():
                if all(pd.notna(row[col]) for col in columns):
                    example = "\n".join(f"{col}: {row[col]}" for col in columns)
                    examples.append(example)
            return "\n\n".join(examples)
        except Exception as e:
            print(f"Error loading {filename}: {str(e)}")
            return ""

    async def _generate_content(self, request: ContentRequest, transcript: str) -> str:
        """Generate content using Claude asynchronously."""
        print(f"Starting {request.prompt_key} generation...")
        start_time = time.time()
        
        example_configs = {
            "clips": ("Viral Twitter Clips.csv", ["Tweet Text", "Clip Transcript"]),
            "description": ("Viral Episode Descriptions.csv", ["Tweet Text"]),
            "timestamps": ("Timestamps.csv", ["Timestamps"]),
            "titles_and_thumbnails": ("Titles & Thumbnails.csv", ["Titles", "Thumbnail"]),
        }
        
        # Build prompt with examples
        full_prompt = self.current_prompts[request.prompt_key]
        if config := example_configs.get(request.prompt_key):
            if examples := self._load_examples(*config):
                full_prompt += f"\n\nPrevious examples:\n{examples}"

        # Run API call in thread pool
        loop = asyncio.get_event_loop()
        with concurrent.futures.ThreadPoolExecutor() as pool:
            message = await loop.run_in_executor(
                pool,
                lambda: client.messages.create(
                    model="claude-3-5-sonnet-20241022",
                    max_tokens=request.max_tokens,
                    temperature=request.temperature,
                    system=full_prompt,
                    messages=[{"role": "user", "content": [{"type": "text", "text": f"Process this transcript:\n\n{transcript}"}]}]
                )
            )
        result = message.content[0].text
        print(f"Finished {request.prompt_key} in {time.time() - start_time:.2f} seconds")
        return result

    def _get_youtube_transcript(self, url: str) -> str:
        """Get transcript from YouTube URL."""
        try:
            video_id = re.search(
                r"(?:youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/embed\/|youtube\.com\/v\/)([A-Za-z0-9_-]+)",
                url
            ).group(1)
            transcript = YouTubeTranscriptApi.list_transcripts(video_id).find_transcript(["en"])
            return " ".join(entry["text"] for entry in transcript.fetch())
        except Exception as e:
            raise Exception(f"Error fetching YouTube transcript: {str(e)}")

    async def process_transcript(self, input_text: str) -> Tuple[str, str, str, str]:
        """Process input and generate all content."""
        try:
            # Get transcript from URL or use direct input
            transcript = (
                self._get_youtube_transcript(input_text)
                if any(x in input_text for x in ["youtube.com", "youtu.be"])
                else input_text
            )

            # Define content generation requests
            requests = [
                ContentRequest("clips", max_tokens=8192),
                ContentRequest("description"),
                ContentRequest("timestamps", temperature=0.4),
                ContentRequest("titles_and_thumbnails", temperature=0.7),
            ]

            # Generate all content concurrently
            results = await asyncio.gather(
                *[self._generate_content(req, transcript) for req in requests]
            )
            return tuple(results)

        except Exception as e:
            return (f"Error processing input: {str(e)}",) * 4

    def update_prompts(self, *values) -> str:
        """Update the current session's prompts."""
        keys = ["clips", "description", "timestamps", "titles_and_thumbnails"]
        self.current_prompts = dict(zip(keys, values))
        return "Prompts updated for this session! Changes will reset when you reload the page."

def create_interface():
    """Create the Gradio interface."""
    processor = TranscriptProcessor()
    
    with gr.Blocks(title="Podcast Transcript Analyzer") as app:
        with gr.Tab("Generate Content"):
            gr.Markdown("# Podcast Content Generator")
            input_text = gr.Textbox(label="Input", placeholder="YouTube URL or transcript...", lines=10)
            submit_btn = gr.Button("Generate Content")
            outputs = [
                gr.Textbox(label=label, lines=10, interactive=False)
                for label in ["Twitter Clips", "Twitter Description", "Timestamps", "Title & Thumbnail Suggestions"]
            ]
            
            async def process_wrapper(text):
                return await processor.process_transcript(text)
            
            submit_btn.click(fn=process_wrapper, inputs=[input_text], outputs=outputs)

        with gr.Tab("Experiment with Prompts"):
            gr.Markdown("# Experiment with Prompts")
            gr.Markdown(
                """
            Here you can experiment with different prompts during your session. 
            Changes will remain active until you reload the page.
            
            Tip: Copy your preferred prompts somewhere safe if you want to reuse them later!
            """
            )

            prompt_inputs = [
                gr.Textbox(
                    label="Clips Prompt", lines=10, value=processor.current_prompts["clips"]
                ),
                gr.Textbox(
                    label="Description Prompt",
                    lines=10,
                    value=processor.current_prompts["description"],
                ),
                gr.Textbox(
                    label="Timestamps Prompt",
                    lines=10,
                    value=processor.current_prompts["timestamps"],
                ),
                gr.Textbox(
                    label="Titles & Thumbnails Prompt",
                    lines=10,
                    value=processor.current_prompts["titles_and_thumbnails"],
                ),
            ]
            status = gr.Textbox(label="Status", interactive=False)

            # Update prompts when they change
            for prompt in prompt_inputs:
                prompt.change(fn=processor.update_prompts, inputs=prompt_inputs, outputs=[status])

            # Reset button
            reset_btn = gr.Button("Reset to Default Prompts")
            reset_btn.click(
                fn=lambda: (
                    processor.update_prompts(*processor.current_prompts.values()),
                    *processor.current_prompts.values(),
                ),
                outputs=[status] + prompt_inputs,
            )

    return app

if __name__ == "__main__":
    create_interface().launch()