File size: 3,747 Bytes
50a465a
5dae26f
2ff2fb2
 
 
 
 
 
 
719c202
a78c4d2
 
 
 
 
 
5dae26f
2ff2fb2
a78c4d2
2ff2fb2
a78c4d2
2ff2fb2
 
 
 
a78c4d2
2ff2fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f9688c
a78c4d2
 
6620629
e50ce70
9f9688c
5dae26f
a2e1737
2ff2fb2
5c76b5d
 
 
fcf9342
5c76b5d
 
 
a2e1737
 
 
2ff2fb2
a78c4d2
a2e1737
 
 
 
2ff2fb2
a2e1737
 
5dae26f
a78c4d2
2ff2fb2
 
 
 
 
 
 
 
 
 
 
a2e1737
 
 
 
5dae26f
a78c4d2
 
5dae26f
a78c4d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import gradio as gr
from typing import *
from pillow_heif import register_heif_opener
register_heif_opener()
import vision_agent as va
from vision_agent.tools import register_tool

from vision_agent.tools import load_image, owl_v2, overlay_bounding_boxes, save_image

from huggingface_hub import login
import spaces

# Perform login using the token
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)

def detect_brain_tumor(image_path: str, output_path: str, debug: bool = False) -> None:
    """
    Detects a brain tumor in the given image and saves the image with bounding boxes.

    Parameters:
        image_path (str): The path to the input image.
        output_path (str): The path to save the output image with bounding boxes.
        debug (bool): Flag to enable logging for debugging purposes.
    """
    # Step 1: Load the image
    image = load_image(image_path)
    if debug:
        print(f"Image loaded from {image_path}")

    # Step 2: Detect brain tumor using owl_v2
    prompt = "detect brain tumor"
    detections = owl_v2(prompt, image)
    if debug:
        print(f"Detections: {detections}")

    # Step 3: Overlay bounding boxes on the image
    image_with_bboxes = overlay_bounding_boxes(image, detections)
    if debug:
        print("Bounding boxes overlaid on the image")

    # Step 4: Save the resulting image
    save_image(image_with_bboxes, output_path)
    if debug:
        print(f"Image saved to {output_path}")

# Example usage (uncomment to run):
# detect_brain_tumor("/content/drive/MyDrive/kaggle/datasets/brain-tumor-image-dataset-semantic-segmentation_old/train_categories/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "/content/drive/MyDrive/kaggle/datasets/brain-tumor-image-dataset-semantic-segmentation_old/output/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", debug=True)

#########

INTRO_TEXT="# 🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
IMAGE_PROMPT="Are these cells healthy or cancerous?"

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(INTRO_TEXT)
    with gr.Tab("Agentic Detection"):
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil")
            with gr.Column():
                text_input = gr.Text(label="Input Text")
                text_output = gr.Text(label="Text Output")
        chat_btn = gr.Button()

        chat_inputs = [
            image,
            "./output/tmp.jpg",
            ]
        chat_outputs = [
            text_output
        ]
        chat_btn.click(
            fn=detect_brain_tumor,
            inputs=chat_inputs,
            outputs=chat_outputs,
        )
        
        examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg"],
                    ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg"],
                    ["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg"],
                    ["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg"],
                    ["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg"],
                    ["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg"],
                    ["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg"],
                    ["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg"],
                    ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg"],
                    ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg"],
                    ]
        gr.Examples(
            examples=examples,
            inputs=chat_inputs,
        )

#########

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)