Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,14 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from threading import Thread
|
| 3 |
-
from typing import Iterator
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
-
import spaces
|
| 7 |
import torch
|
| 8 |
from transformers import (
|
| 9 |
AutoModelForCausalLM,
|
| 10 |
AutoTokenizer,
|
| 11 |
TextIteratorStreamer,
|
| 12 |
-
LlamaTokenizer,
|
| 13 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import subprocess
|
| 15 |
|
| 16 |
subprocess.run(
|
|
@@ -19,129 +17,89 @@ subprocess.run(
|
|
| 19 |
shell=True,
|
| 20 |
)
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
-
MAX_MAX_NEW_TOKENS = 1024
|
| 24 |
-
DEFAULT_MAX_NEW_TOKENS = 50
|
| 25 |
-
MAX_INPUT_TOKEN_LENGTH = 512
|
| 26 |
-
|
| 27 |
-
DESCRIPTION = """\
|
| 28 |
-
# Phi-3-mini-4k-instruct
|
| 29 |
-
|
| 30 |
-
This Space demonstrates [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) by Microsoft. Please, check the original model card for details.
|
| 31 |
-
|
| 32 |
-
For additional detail on the model, including a link to the arXiv paper, refer to the [Hugging Face Paper page for Phi 3](https://huggingface.co/papers/2404.14219) .
|
| 33 |
-
"""
|
| 34 |
|
| 35 |
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
-
"microsoft/Phi-3-mini-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
trust_remote_code=True
|
| 40 |
)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
for
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
| 72 |
generate_kwargs = dict(
|
| 73 |
-
|
| 74 |
streamer=streamer,
|
| 75 |
-
max_new_tokens=
|
| 76 |
do_sample=True,
|
| 77 |
-
top_p=top_p,
|
| 78 |
-
top_k=top_k,
|
| 79 |
temperature=temperature,
|
| 80 |
-
|
| 81 |
-
pad_token_id = tokenizer.eos_token_id,
|
| 82 |
-
repetition_penalty=repetition_penalty,
|
| 83 |
-
no_repeat_ngram_size=5,
|
| 84 |
-
early_stopping=False,
|
| 85 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 87 |
t.start()
|
| 88 |
|
| 89 |
-
|
| 90 |
-
for
|
| 91 |
-
|
| 92 |
-
yield
|
|
|
|
|
|
|
| 93 |
|
| 94 |
|
| 95 |
-
|
| 96 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
additional_inputs=[
|
| 98 |
gr.Slider(
|
| 99 |
-
|
| 100 |
-
minimum=1,
|
| 101 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
| 102 |
-
step=1,
|
| 103 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
| 104 |
-
),
|
| 105 |
-
gr.Slider(
|
| 106 |
-
label="Temperature",
|
| 107 |
-
minimum=0.1,
|
| 108 |
-
maximum=4.0,
|
| 109 |
-
step=0.1,
|
| 110 |
-
value=0.1,
|
| 111 |
-
),
|
| 112 |
-
gr.Slider(
|
| 113 |
-
label="Top-p (nucleus sampling)",
|
| 114 |
-
minimum=0.05,
|
| 115 |
-
maximum=1.0,
|
| 116 |
-
step=0.05,
|
| 117 |
-
value=0.5,
|
| 118 |
),
|
|
|
|
| 119 |
gr.Slider(
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
maximum=1000,
|
| 123 |
step=1,
|
| 124 |
-
value=
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
label="Repetition penalty",
|
| 128 |
-
minimum=1.0,
|
| 129 |
-
maximum=2.0,
|
| 130 |
-
step=0.05,
|
| 131 |
-
value=1.4,
|
| 132 |
),
|
| 133 |
],
|
| 134 |
-
stop_btn=
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
["Explain quantum physics in 5 words or less:"],
|
| 138 |
-
["Question: What do you call a bear with no teeth?\nAnswer:"],
|
| 139 |
-
],
|
| 140 |
)
|
| 141 |
-
|
| 142 |
-
with gr.Blocks(css="style.css") as demo:
|
| 143 |
-
gr.Markdown(DESCRIPTION)
|
| 144 |
-
chat_interface.render()
|
| 145 |
-
|
| 146 |
-
if __name__ == "__main__":
|
| 147 |
-
demo.queue(max_size=20).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import (
|
| 4 |
AutoModelForCausalLM,
|
| 5 |
AutoTokenizer,
|
| 6 |
TextIteratorStreamer,
|
|
|
|
| 7 |
)
|
| 8 |
+
import os
|
| 9 |
+
from threading import Thread
|
| 10 |
+
import spaces
|
| 11 |
+
import time
|
| 12 |
import subprocess
|
| 13 |
|
| 14 |
subprocess.run(
|
|
|
|
| 17 |
shell=True,
|
| 18 |
)
|
| 19 |
|
| 20 |
+
token = os.environ["HF_TOKEN"]
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
| 25 |
+
token=token,
|
| 26 |
+
trust_remote_code=True,
|
|
|
|
| 27 |
)
|
| 28 |
+
tok = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", token=token)
|
| 29 |
+
terminators = [
|
| 30 |
+
tok.eos_token_id,
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
if torch.cuda.is_available():
|
| 34 |
+
device = torch.device("cuda")
|
| 35 |
+
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
| 36 |
+
else:
|
| 37 |
+
device = torch.device("cpu")
|
| 38 |
+
print("Using CPU")
|
| 39 |
+
|
| 40 |
+
model = model.to(device)
|
| 41 |
+
# Dispatch Errors
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@spaces.GPU(duration=60)
|
| 45 |
+
def chat(message, history, temperature, do_sample, max_tokens):
|
| 46 |
+
chat = []
|
| 47 |
+
for item in history:
|
| 48 |
+
chat.append({"role": "user", "content": item[0]})
|
| 49 |
+
if item[1] is not None:
|
| 50 |
+
chat.append({"role": "assistant", "content": item[1]})
|
| 51 |
+
chat.append({"role": "user", "content": message})
|
| 52 |
+
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 53 |
+
model_inputs = tok([messages], return_tensors="pt").to(device)
|
| 54 |
+
streamer = TextIteratorStreamer(
|
| 55 |
+
tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
| 56 |
+
)
|
|
|
|
|
|
|
| 57 |
generate_kwargs = dict(
|
| 58 |
+
model_inputs,
|
| 59 |
streamer=streamer,
|
| 60 |
+
max_new_tokens=max_tokens,
|
| 61 |
do_sample=True,
|
|
|
|
|
|
|
| 62 |
temperature=temperature,
|
| 63 |
+
eos_token_id=terminators,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
)
|
| 65 |
+
|
| 66 |
+
if temperature == 0:
|
| 67 |
+
generate_kwargs["do_sample"] = False
|
| 68 |
+
|
| 69 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 70 |
t.start()
|
| 71 |
|
| 72 |
+
partial_text = ""
|
| 73 |
+
for new_text in streamer:
|
| 74 |
+
partial_text += new_text
|
| 75 |
+
yield partial_text
|
| 76 |
+
|
| 77 |
+
yield partial_text
|
| 78 |
|
| 79 |
|
| 80 |
+
demo = gr.ChatInterface(
|
| 81 |
+
fn=chat,
|
| 82 |
+
examples=[["Write me a poem about Machine Learning."]],
|
| 83 |
+
# multimodal=False,
|
| 84 |
+
additional_inputs_accordion=gr.Accordion(
|
| 85 |
+
label="⚙️ Parameters", open=False, render=False
|
| 86 |
+
),
|
| 87 |
additional_inputs=[
|
| 88 |
gr.Slider(
|
| 89 |
+
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
),
|
| 91 |
+
gr.Checkbox(label="Sampling", value=True),
|
| 92 |
gr.Slider(
|
| 93 |
+
minimum=128,
|
| 94 |
+
maximum=4096,
|
|
|
|
| 95 |
step=1,
|
| 96 |
+
value=512,
|
| 97 |
+
label="Max new tokens",
|
| 98 |
+
render=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
),
|
| 100 |
],
|
| 101 |
+
stop_btn="Stop Generation",
|
| 102 |
+
title="Chat With LLMs",
|
| 103 |
+
description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)",
|
|
|
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|