File size: 1,975 Bytes
97e8d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from typing import List, Dict, Any
from datasets import load_dataset, Dataset

class DatasetManagementService:
    def __init__(self, dataset_name: str):
        self.dataset_name = dataset_name

    def update_dataset(self, new_metadata: List[Dict[str, Any]]) -> str:
        try:
            dataset = load_dataset(self.dataset_name, split="train")
            current_data = dataset.to_dict()

            if not current_data:
                current_data = {key: [] for key in new_metadata[0].keys()}

            updated = False
            for paper in new_metadata:
                entry_id = paper['entry_id'].split('/')[-1]
                if 'entry_id' not in current_data or entry_id not in current_data['entry_id']:
                    for key, value in paper.items():
                        current_data.setdefault(key, []).append(value)
                    updated = True
                else:
                    index = current_data['entry_id'].index(entry_id)
                    for key, value in paper.items():
                        if current_data[key][index] != value:
                            current_data[key][index] = value
                            updated = True

            if updated:
                updated_dataset = Dataset.from_dict(current_data)
                updated_dataset.push_to_hub(self.dataset_name, split="train")
                return f"Successfully updated dataset with {len(new_metadata)} papers"
            else:
                return "No new data to update."
        except Exception as e:
            return f"Failed to update dataset: {str(e)}"

    def get_dataset_records(self) -> List[Dict[str, Any]]:
        dataset = load_dataset(self.dataset_name, split="train")
        return dataset.to_pandas().to_dict(orient="records")

# Usage:
# dataset_service = DatasetManagementService("your_dataset_name")
# result = dataset_service.update_dataset(new_metadata)
# records = dataset_service.get_dataset_records()