retrieval_metadata / dataset_management_service.py
donb-hf's picture
update get_dataset_records
79cf287
from typing import List, Dict, Any
from datasets import load_dataset, Dataset
import logging
class DatasetManagementService:
def __init__(self, dataset_name: str):
self.dataset_name = dataset_name
def update_dataset(self, new_metadata: List[Dict[str, Any]]) -> str:
try:
# Try to load the existing dataset
try:
dataset = load_dataset(self.dataset_name, split="train")
current_data = dataset.to_dict()
except Exception:
# If loading fails, start with an empty dictionary
current_data = {}
# If the dataset is empty, initialize it with the structure from new_metadata
if not current_data:
current_data = {key: [] for key in new_metadata[0].keys()}
updated = False
for paper in new_metadata:
entry_id = paper['entry_id']
if 'entry_id' not in current_data:
current_data['entry_id'] = []
if entry_id not in current_data['entry_id']:
# Add new paper
for key, value in paper.items():
current_data.setdefault(key, []).append(value)
updated = True
else:
# Update existing paper
index = current_data['entry_id'].index(entry_id)
for key, value in paper.items():
if current_data[key][index] != value:
current_data[key][index] = value
updated = True
if updated:
updated_dataset = Dataset.from_dict(current_data)
updated_dataset.push_to_hub(self.dataset_name, split="train")
return f"Successfully updated dataset with {len(new_metadata)} papers"
else:
return "No new data to update."
except Exception as e:
return f"Failed to update dataset: {str(e)}"
def get_dataset_size(self) -> int:
try:
dataset = load_dataset(self.dataset_name, split="train")
size = len(dataset)
logging.info(f"Dataset size: {size}")
return size
except Exception as e:
logging.error(f"Error getting dataset size: {str(e)}")
return 0
def get_dataset_records(self, page: int, page_size: int) -> List[Dict[str, Any]]:
try:
dataset = load_dataset(self.dataset_name, split="train")
start_idx = (page - 1) * page_size
end_idx = start_idx + page_size
records = dataset[start_idx:end_idx]
# Convert to list of dictionaries
records_list = [dict(zip(records.keys(), values)) for values in zip(*records.values())]
logging.info(f"Records type: {type(records_list)}")
logging.info(f"Number of records: {len(records_list)}")
return records_list
except Exception as e:
logging.error(f"Error loading dataset records: {str(e)}")
return [{"error": f"Error loading dataset: {str(e)}"}]
# Usage:
# dataset_service = DatasetManagementService("your_dataset_name")
# result = dataset_service.update_dataset(new_metadata)
# records = dataset_service.get_dataset_records()