Spaces:
Paused
Paused
simplify app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,113 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
import traceback
|
4 |
import logging
|
|
|
|
|
|
|
5 |
from config import DATASET_NAME
|
6 |
-
from datasets import load_dataset
|
7 |
|
|
|
8 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
arxiv_service = ArxivMetadataService()
|
11 |
|
12 |
-
|
|
|
13 |
try:
|
14 |
-
result = arxiv_service.
|
15 |
logging.info(f"Extraction result: {result}")
|
16 |
return result
|
17 |
except Exception as e:
|
@@ -19,20 +115,21 @@ def extract_metadata(query: str, max_results: int):
|
|
19 |
logging.error(error_msg)
|
20 |
return error_msg
|
21 |
|
22 |
-
def
|
23 |
try:
|
24 |
-
|
25 |
-
return
|
26 |
except Exception as e:
|
27 |
return f"Error loading dataset: {str(e)}"
|
28 |
|
|
|
29 |
with gr.Blocks() as demo:
|
30 |
gr.Markdown(
|
31 |
f"""Extract metadata from ArXiv papers and update the dataset.
|
32 |
\n\nCurrently leverages the following datasets:
|
33 |
\n- [{DATASET_NAME}](https://huggingface.co/datasets/{DATASET_NAME}/viewer) dataset.
|
34 |
"""
|
35 |
-
|
36 |
|
37 |
with gr.Tab("Extract Metadata"):
|
38 |
query_input = gr.Textbox(label="ArXiv Query")
|
@@ -41,20 +138,21 @@ with gr.Blocks() as demo:
|
|
41 |
output = gr.Textbox(label="Result")
|
42 |
|
43 |
submit_button.click(
|
44 |
-
fn=
|
45 |
inputs=[query_input, max_results],
|
46 |
outputs=output
|
47 |
)
|
48 |
|
49 |
with gr.Tab("View Dataset"):
|
50 |
refresh_button = gr.Button("Refresh Dataset Info")
|
51 |
-
dataset_info = gr.
|
52 |
|
53 |
refresh_button.click(
|
54 |
-
fn=
|
55 |
inputs=[],
|
56 |
outputs=dataset_info
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
-
demo.
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import arxiv
|
3 |
import traceback
|
4 |
import logging
|
5 |
+
from typing import List, Dict, Any
|
6 |
+
from datasets import load_dataset, Dataset
|
7 |
+
from huggingface_hub import HfApi
|
8 |
from config import DATASET_NAME
|
|
|
9 |
|
10 |
+
# Logging setup
|
11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
|
13 |
+
# Arxiv Fetcher logic
|
14 |
+
def fetch_metadata(query: str, max_results: int = 10) -> List[Dict[str, Any]]:
|
15 |
+
logging.info(f"Fetching arXiv metadata for query: {query}")
|
16 |
+
if not query.strip():
|
17 |
+
logging.warning("Empty or whitespace-only query provided")
|
18 |
+
return []
|
19 |
+
|
20 |
+
client = arxiv.Client(page_size=max_results, delay_seconds=3, num_retries=3)
|
21 |
+
search = arxiv.Search(query=query, max_results=max_results, sort_by=arxiv.SortCriterion.SubmittedDate)
|
22 |
+
|
23 |
+
results = []
|
24 |
+
try:
|
25 |
+
for result in client.results(search):
|
26 |
+
metadata = {
|
27 |
+
"title": result.title,
|
28 |
+
"authors": [author.name for author in result.authors],
|
29 |
+
"published": result.published.isoformat(),
|
30 |
+
"updated": result.updated.isoformat(),
|
31 |
+
"pdf_url": result.pdf_url,
|
32 |
+
"entry_id": result.entry_id,
|
33 |
+
"summary": result.summary,
|
34 |
+
"categories": result.categories,
|
35 |
+
"primary_category": result.primary_category,
|
36 |
+
"html_url": f"http://arxiv.org/abs/{result.entry_id.split('/')[-1]}"
|
37 |
+
}
|
38 |
+
results.append(metadata)
|
39 |
+
logging.info(f"Fetched metadata for {len(results)} papers")
|
40 |
+
except Exception as e:
|
41 |
+
logging.error(f"Error fetching metadata: {str(e)}")
|
42 |
+
|
43 |
+
return results
|
44 |
+
|
45 |
+
# Arxiv Metadata Service logic
|
46 |
+
class ArxivMetadataService:
|
47 |
+
def __init__(self):
|
48 |
+
self.hf_api = HfApi()
|
49 |
+
|
50 |
+
def extract_metadata_and_update_dataset(self, query: str, max_results: int = 10) -> str:
|
51 |
+
metadata_list = fetch_metadata(query, max_results)
|
52 |
+
if not metadata_list:
|
53 |
+
return "No metadata found for the given query."
|
54 |
+
return self.update_dataset(metadata_list)
|
55 |
+
|
56 |
+
def update_dataset(self, metadata_list: List[Dict[str, Any]]) -> str:
|
57 |
+
try:
|
58 |
+
# Load the existing dataset
|
59 |
+
try:
|
60 |
+
dataset = load_dataset(DATASET_NAME, split="train")
|
61 |
+
current_data = dataset.to_dict()
|
62 |
+
except Exception:
|
63 |
+
# If loading fails, start with an empty dictionary
|
64 |
+
current_data = {}
|
65 |
+
|
66 |
+
# If the dataset is empty, initialize it with the structure from metadata_list
|
67 |
+
if not current_data:
|
68 |
+
current_data = {key: [] for key in metadata_list[0].keys()}
|
69 |
+
|
70 |
+
updated = False
|
71 |
+
for paper in metadata_list:
|
72 |
+
entry_id = paper['entry_id'].split('/')[-1]
|
73 |
+
if 'entry_id' not in current_data or entry_id not in current_data['entry_id']:
|
74 |
+
# Add new paper
|
75 |
+
for key, value in paper.items():
|
76 |
+
current_data.setdefault(key, []).append(value)
|
77 |
+
updated = True
|
78 |
+
else:
|
79 |
+
# Update existing paper
|
80 |
+
index = current_data['entry_id'].index(entry_id)
|
81 |
+
for key, value in paper.items():
|
82 |
+
if current_data[key][index] != value:
|
83 |
+
current_data[key][index] = value
|
84 |
+
updated = True
|
85 |
+
|
86 |
+
if updated:
|
87 |
+
updated_dataset = Dataset.from_dict(current_data)
|
88 |
+
updated_dataset.push_to_hub(DATASET_NAME, split="train")
|
89 |
+
return f"Successfully updated dataset with {len(metadata_list)} papers"
|
90 |
+
else:
|
91 |
+
return "No new data to update."
|
92 |
+
except Exception as e:
|
93 |
+
logging.error(f"Failed to update dataset: {str(e)}")
|
94 |
+
return f"Failed to update dataset: {str(e)}"
|
95 |
+
|
96 |
+
def get_dataset_records(self):
|
97 |
+
try:
|
98 |
+
dataset = load_dataset(DATASET_NAME, split="train")
|
99 |
+
records = dataset.to_pandas().to_dict(orient="records")
|
100 |
+
return records
|
101 |
+
except Exception as e:
|
102 |
+
return f"Error loading dataset: {str(e)}"
|
103 |
+
|
104 |
+
# Initialize Arxiv Metadata Service
|
105 |
arxiv_service = ArxivMetadataService()
|
106 |
|
107 |
+
# Define Gradio functions
|
108 |
+
def handle_metadata_extraction(query: str, max_results: int):
|
109 |
try:
|
110 |
+
result = arxiv_service.extract_metadata_and_update_dataset(query, max_results)
|
111 |
logging.info(f"Extraction result: {result}")
|
112 |
return result
|
113 |
except Exception as e:
|
|
|
115 |
logging.error(error_msg)
|
116 |
return error_msg
|
117 |
|
118 |
+
def handle_dataset_view():
|
119 |
try:
|
120 |
+
records = arxiv_service.get_dataset_records()
|
121 |
+
return records
|
122 |
except Exception as e:
|
123 |
return f"Error loading dataset: {str(e)}"
|
124 |
|
125 |
+
# Define Gradio interface
|
126 |
with gr.Blocks() as demo:
|
127 |
gr.Markdown(
|
128 |
f"""Extract metadata from ArXiv papers and update the dataset.
|
129 |
\n\nCurrently leverages the following datasets:
|
130 |
\n- [{DATASET_NAME}](https://huggingface.co/datasets/{DATASET_NAME}/viewer) dataset.
|
131 |
"""
|
132 |
+
)
|
133 |
|
134 |
with gr.Tab("Extract Metadata"):
|
135 |
query_input = gr.Textbox(label="ArXiv Query")
|
|
|
138 |
output = gr.Textbox(label="Result")
|
139 |
|
140 |
submit_button.click(
|
141 |
+
fn=handle_metadata_extraction,
|
142 |
inputs=[query_input, max_results],
|
143 |
outputs=output
|
144 |
)
|
145 |
|
146 |
with gr.Tab("View Dataset"):
|
147 |
refresh_button = gr.Button("Refresh Dataset Info")
|
148 |
+
dataset_info = gr.JSON(label="Dataset Info")
|
149 |
|
150 |
refresh_button.click(
|
151 |
+
fn=handle_dataset_view,
|
152 |
inputs=[],
|
153 |
outputs=dataset_info
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
demo.queue()
|
158 |
+
demo.launch()
|