Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import requests
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
import smolagents
|
|
|
7 |
from smolagents import DuckDuckGoSearchTool, VisitWebpageTool
|
8 |
import time
|
9 |
from functools import lru_cache
|
@@ -82,7 +83,14 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
82 |
# Cache Wrapper
|
83 |
@lru_cache(maxsize=100)
|
84 |
def cached_search(query):
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# --- Basic Agent Definition ---
|
88 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
@@ -97,105 +105,195 @@ class BasicAgent:
|
|
97 |
self.history = []
|
98 |
print(f"BasicAgent initialized with model: {model} and {len(self.tools)} tools.")
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def __call__(self, question: str) -> str:
|
102 |
-
print(f"Agent received question
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
-
|
110 |
-
def process_question(self, question:str) -> str:
|
111 |
try:
|
112 |
# Check if this is a request about a YouTube video
|
113 |
youtube_patterns = ["youtube.com", "youtu.be", "watch youtube", "youtube video"]
|
114 |
use_youtube_tool = any(pattern in question.lower() for pattern in youtube_patterns)
|
115 |
|
|
|
|
|
|
|
|
|
116 |
if use_youtube_tool and any(isinstance(tool, YouTubeVideoTool) for tool in self.tools):
|
117 |
# Extract potential YouTube URL or ID
|
118 |
url_match = re.search(r'(?:https?:\/\/)?(?:www\.)?(?:youtube\.com|youtu\.be)\/[^\s]+', question)
|
119 |
youtube_url = url_match.group(0) if url_match else question
|
120 |
|
|
|
121 |
# Use YouTube tool
|
122 |
-
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
else:
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
relevant_info = self._extract_key_info(search_results, question)
|
131 |
return self._formulate_direct_answer(relevant_info, question)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
relevant_info = self._extract_key_info(search_results, question)
|
138 |
-
return self._formulate_direct_answer(relevant_info, question)
|
139 |
-
except:
|
140 |
-
return self._get_fallback_answer(question)
|
141 |
-
return self._get_fallback_answer(question)
|
142 |
|
143 |
|
144 |
|
145 |
def _extract_key_info(self, search_results, question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
# Split results into sentences and find most relevant
|
147 |
sentences = search_results.split('. ')
|
148 |
if len(sentences) <= 3:
|
149 |
-
return search_results[:
|
150 |
|
151 |
-
# Try to find
|
152 |
keywords = [w for w in question.lower().split() if len(w) > 3]
|
|
|
|
|
153 |
for sentence in sentences:
|
154 |
sentence_lower = sentence.lower()
|
155 |
if any(keyword in sentence_lower for keyword in keywords):
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
# Fallback to first few sentences
|
159 |
-
return '. '.join(sentences[:
|
160 |
-
|
161 |
-
|
162 |
|
163 |
def _formulate_direct_answer(self, relevant_info, question):
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
prompt = f"Question: {question}\n\nRelevant information: {relevant_info}\n\nProvide a concise answer based only on the given information."
|
190 |
-
response = model.generate_content(prompt)
|
191 |
return response.text
|
|
|
|
|
|
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
199 |
|
200 |
|
201 |
def _get_fallback_answer(self, question):
|
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
import smolagents
|
7 |
+
import traceback
|
8 |
from smolagents import DuckDuckGoSearchTool, VisitWebpageTool
|
9 |
import time
|
10 |
from functools import lru_cache
|
|
|
83 |
# Cache Wrapper
|
84 |
@lru_cache(maxsize=100)
|
85 |
def cached_search(query):
|
86 |
+
try:
|
87 |
+
print(f"Performing search for: {query[:50]}...")
|
88 |
+
result = search_tool(query)
|
89 |
+
print(f"Search successful, returned {len(result)} characters")
|
90 |
+
return result
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Search error: {str(e)}")
|
93 |
+
return f"Search error: {str(e)}"
|
94 |
|
95 |
# --- Basic Agent Definition ---
|
96 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
|
|
105 |
self.history = []
|
106 |
print(f"BasicAgent initialized with model: {model} and {len(self.tools)} tools.")
|
107 |
|
108 |
+
|
109 |
+
if self.model and self.model.startswith('gemini'):
|
110 |
+
try:
|
111 |
+
self._init_gemini_model()
|
112 |
+
print("Successfully initialized Gemini model")
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Error initializing Gemini model: {e}")
|
115 |
+
print("Will try again when needed")
|
116 |
+
self.gemini_model = None
|
117 |
+
else:
|
118 |
+
self.gemini_model = None
|
119 |
+
|
120 |
+
def _init_gemini_model(self):
|
121 |
+
|
122 |
+
"""Initialize the Gemini model with appropriate settings"""
|
123 |
+
generation_config = {
|
124 |
+
"temperature": 0.7,
|
125 |
+
"top_p": 0.95,
|
126 |
+
"top_k": 40,
|
127 |
+
"max_output_tokens": 1024,
|
128 |
+
}
|
129 |
+
|
130 |
+
safety_settings = {
|
131 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
132 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
133 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
134 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
135 |
+
}
|
136 |
+
|
137 |
+
model_name = "gemini-pro"
|
138 |
+
if "gemini-2.0" in self.model:
|
139 |
+
model_name = "gemini-1.5-pro"
|
140 |
+
|
141 |
+
self.gemini_model = genai.GenerativeModel(
|
142 |
+
model_name=model_name,
|
143 |
+
generation_config=generation_config,
|
144 |
+
safety_settings=safety_settings
|
145 |
+
)
|
146 |
+
|
147 |
def __call__(self, question: str) -> str:
|
148 |
+
print(f"Agent received question: {question[:50]}...")
|
149 |
+
try:
|
150 |
+
final_answer = self.process_question(question)
|
151 |
+
print(f"Agent returning answer: {final_answer[:50]}...")
|
152 |
+
return final_answer
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Agent error: {str(e)}")
|
155 |
+
traceback.print_exc()
|
156 |
+
return f"I apologize, but I encountered an error while processing your question. Error: {str(e)}"
|
157 |
+
|
158 |
|
159 |
|
160 |
+
def process_question(self, question: str) -> str:
|
|
|
161 |
try:
|
162 |
# Check if this is a request about a YouTube video
|
163 |
youtube_patterns = ["youtube.com", "youtu.be", "watch youtube", "youtube video"]
|
164 |
use_youtube_tool = any(pattern in question.lower() for pattern in youtube_patterns)
|
165 |
|
166 |
+
search_results = ""
|
167 |
+
youtube_info = ""
|
168 |
+
|
169 |
+
# Step 1: Gather information
|
170 |
if use_youtube_tool and any(isinstance(tool, YouTubeVideoTool) for tool in self.tools):
|
171 |
# Extract potential YouTube URL or ID
|
172 |
url_match = re.search(r'(?:https?:\/\/)?(?:www\.)?(?:youtube\.com|youtu\.be)\/[^\s]+', question)
|
173 |
youtube_url = url_match.group(0) if url_match else question
|
174 |
|
175 |
+
print(f"Using YouTube tool with URL: {youtube_url}")
|
176 |
# Use YouTube tool
|
177 |
+
youtube_tool_instance = next((tool for tool in self.tools if isinstance(tool, YouTubeVideoTool)), None)
|
178 |
+
if youtube_tool_instance:
|
179 |
+
youtube_info = youtube_tool_instance(youtube_url)
|
180 |
+
print(f"YouTube info retrieved: {len(youtube_info)} characters")
|
181 |
|
182 |
+
# Always search as backup or additional context
|
183 |
+
if any(isinstance(tool, DuckDuckGoSearchTool) for tool in self.tools):
|
184 |
+
search_results = cached_search(question)
|
185 |
+
print(f"Search results: {len(search_results)} characters")
|
186 |
+
|
187 |
+
# Determine what information to use
|
188 |
+
if youtube_info and "Error processing YouTube video" not in youtube_info:
|
189 |
+
primary_info = youtube_info
|
190 |
+
print("Using YouTube info as primary source")
|
191 |
else:
|
192 |
+
primary_info = search_results
|
193 |
+
print("Using search results as primary source")
|
194 |
+
|
195 |
+
# Extract key information
|
196 |
+
relevant_info = self._extract_key_info(primary_info, question)
|
197 |
+
print(f"Extracted relevant info: {len(relevant_info)} characters")
|
198 |
+
|
199 |
+
# Formulate an answer
|
200 |
+
return self._formulate_direct_answer(relevant_info, question)
|
201 |
+
|
202 |
+
except Exception as e:
|
203 |
+
print(f"Error in process_question: {str(e)}")
|
204 |
+
traceback.print_exc()
|
205 |
+
if "too many requests" in str(e).lower():
|
206 |
+
time.sleep(2)
|
207 |
+
try:
|
208 |
+
search_results = cached_search(question)
|
209 |
relevant_info = self._extract_key_info(search_results, question)
|
210 |
return self._formulate_direct_answer(relevant_info, question)
|
211 |
+
except Exception as retry_error:
|
212 |
+
print(f"Error in retry: {str(retry_error)}")
|
213 |
+
return self._get_fallback_answer(question)
|
214 |
+
return self._get_fallback_answer(question)
|
215 |
+
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
|
218 |
|
219 |
def _extract_key_info(self, search_results, question):
|
220 |
+
# Basic check for empty results
|
221 |
+
if not search_results or len(search_results) < 10:
|
222 |
+
return "No relevant information found."
|
223 |
+
|
224 |
+
# For YouTube transcripts, extract the most relevant portion
|
225 |
+
if "Transcript from YouTube video" in search_results:
|
226 |
+
# Split by sentences but keep limited context
|
227 |
+
max_chars = 500 # Keep a reasonable chunk size
|
228 |
+
if len(search_results) > max_chars:
|
229 |
+
# Take a portion from the middle of the transcript for better relevance
|
230 |
+
start_idx = search_results.find("\n") + 1 # Skip the first line which is the header
|
231 |
+
# Get content chunk
|
232 |
+
return search_results[start_idx:start_idx+max_chars]
|
233 |
+
return search_results
|
234 |
+
|
235 |
+
# For search results
|
236 |
# Split results into sentences and find most relevant
|
237 |
sentences = search_results.split('. ')
|
238 |
if len(sentences) <= 3:
|
239 |
+
return search_results[:300]
|
240 |
|
241 |
+
# Try to find sentences with keywords from question
|
242 |
keywords = [w for w in question.lower().split() if len(w) > 3]
|
243 |
+
relevant_sentences = [] # NEW LINE
|
244 |
+
|
245 |
for sentence in sentences:
|
246 |
sentence_lower = sentence.lower()
|
247 |
if any(keyword in sentence_lower for keyword in keywords):
|
248 |
+
relevant_sentences.append(sentence)
|
249 |
+
if len(relevant_sentences) >= 3: # Get up to 3 relevant sentences
|
250 |
+
break
|
251 |
+
|
252 |
+
# If we found relevant sentences, use them
|
253 |
+
if relevant_sentences:
|
254 |
+
return '. '.join(relevant_sentences)
|
255 |
|
256 |
# Fallback to first few sentences
|
257 |
+
return '. '.join(sentences[:3])
|
|
|
|
|
258 |
|
259 |
def _formulate_direct_answer(self, relevant_info, question):
|
260 |
+
|
261 |
+
if not self.model:
|
262 |
+
return f"Based on available information: {relevant_info}"
|
263 |
+
|
264 |
+
if self.model.startswith('gemini'):
|
265 |
+
try:
|
266 |
+
|
267 |
+
if not hasattr(self, 'gemini_model') or self.gemini_model is None:
|
268 |
+
self._init_gemini_model()
|
269 |
+
|
270 |
+
|
271 |
+
prompt = f"""
|
272 |
+
Question: {question}
|
273 |
+
|
274 |
+
Relevant information: {relevant_info}
|
275 |
+
|
276 |
+
Instructions:
|
277 |
+
1. Provide a concise answer based only on the given information
|
278 |
+
2. If the information doesn't contain the answer, say so honestly
|
279 |
+
3. Use only facts from the provided information
|
280 |
+
4. Format your response as a direct answer to the user
|
281 |
+
"""
|
282 |
+
|
283 |
+
response = self.gemini_model.generate_content(prompt)
|
284 |
+
if response and hasattr(response, 'text'):
|
|
|
|
|
285 |
return response.text
|
286 |
+
else:
|
287 |
+
print("Gemini response was empty or invalid")
|
288 |
+
return f"Based on the information: {relevant_info[:200]}..."
|
289 |
|
290 |
+
except Exception as e:
|
291 |
+
print(f"Error using Gemini model: {e}")
|
292 |
+
traceback.print_exc()
|
293 |
+
return f"Based on the search: {relevant_info[:200]}..."
|
294 |
+
|
295 |
+
return f"Based on the information: {relevant_info[:200]}..."
|
296 |
+
|
297 |
|
298 |
|
299 |
def _get_fallback_answer(self, question):
|