Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from functools import lru_cache # Added: For caching search results
|
|
11 |
from youtube_transcript_api import YouTubeTranscriptApi
|
12 |
import re
|
13 |
|
|
|
14 |
class YouTubeVideoTool:
|
15 |
def __init__(self):
|
16 |
self.name = "youtube_video_tool"
|
@@ -41,6 +42,8 @@ class YouTubeVideoTool:
|
|
41 |
except Exception as e:
|
42 |
return f"Error processing YouTube video: {str(e)}"
|
43 |
|
|
|
|
|
44 |
def _extract_video_id(self, url_or_id):
|
45 |
"""Extract YouTube video ID from various URL formats or return the ID if already provided."""
|
46 |
# Handle direct video ID
|
@@ -78,13 +81,18 @@ def cached_search(query):
|
|
78 |
|
79 |
# --- Basic Agent Definition ---
|
80 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
|
|
|
|
81 |
class BasicAgent:
|
|
|
|
|
82 |
def __init__(self, model=None, tools=None):
|
83 |
self.model = model
|
84 |
self.tools = tools if tools is not None else []
|
85 |
self.history = []
|
86 |
-
print("BasicAgent initialized.")
|
87 |
|
|
|
88 |
def __call__(self, question: str) -> str:
|
89 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
90 |
# Implement your agent logic here using self.model and self.tools
|
@@ -92,6 +100,8 @@ class BasicAgent:
|
|
92 |
print(f"Agent returning answer: {final_answer[:50]}...")
|
93 |
return final_answer
|
94 |
|
|
|
|
|
95 |
def process_question(self, question:str) -> str:
|
96 |
try:
|
97 |
# Check if this is a request about a YouTube video
|
@@ -111,7 +121,7 @@ class BasicAgent:
|
|
111 |
return self._formulate_direct_answer(relevant_info, question)
|
112 |
else:
|
113 |
# Use regular search
|
114 |
-
search_results = cached_search(question) if
|
115 |
relevant_info = self._extract_key_info(search_results, question)
|
116 |
return self._formulate_direct_answer(relevant_info, question)
|
117 |
except Exception as e:
|
@@ -125,6 +135,8 @@ class BasicAgent:
|
|
125 |
return self._get_fallback_answer(question)
|
126 |
return self._get_fallback_answer(question)
|
127 |
|
|
|
|
|
128 |
def _extract_key_info(self, search_results, question):
|
129 |
# Split results into sentences and find most relevant
|
130 |
sentences = search_results.split('. ')
|
@@ -141,10 +153,15 @@ class BasicAgent:
|
|
141 |
# Fallback to first few sentences
|
142 |
return '. '.join(sentences[:2])
|
143 |
|
|
|
|
|
144 |
def _formulate_direct_answer(self, relevant_info, question):
|
145 |
-
|
|
|
146 |
return relevant_info
|
147 |
|
|
|
|
|
148 |
def _get_fallback_answer(self, question):
|
149 |
return f"Based on the information available, I cannot provide a specific answer to your question about {question.split()[0:3]}..."
|
150 |
|
@@ -169,6 +186,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
169 |
questions_url = f"{api_url}/questions"
|
170 |
submit_url = f"{api_url}/submit"
|
171 |
|
|
|
|
|
172 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
173 |
try:
|
174 |
agent = BasicAgent(model= 'gemini/gemini-2.0-flash-exp', tools=[search_tool, visit_webpage, youtube_tool])
|
@@ -179,6 +198,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
179 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
180 |
print(agent_code)
|
181 |
|
|
|
|
|
182 |
# 2. Fetch Questions
|
183 |
print(f"Fetching questions from: {questions_url}")
|
184 |
try:
|
@@ -200,11 +221,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
200 |
print(f"An unexpected error occurred fetching questions: {e}")
|
201 |
return f"An unexpected error occurred fetching questions: {e}", None
|
202 |
|
|
|
|
|
203 |
# 3. Run your Agent
|
204 |
results_log = []
|
205 |
answers_payload = []
|
206 |
print(f"Running agent on {len(questions_data)} questions...")
|
207 |
-
for item in questions_data:
|
208 |
task_id = item.get("task_id")
|
209 |
question_text = item.get("question")
|
210 |
if not task_id or question_text is None:
|
@@ -224,11 +247,15 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
224 |
print("Agent did not produce any answers to submit.")
|
225 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
226 |
|
|
|
|
|
227 |
# 4. Prepare Submission
|
228 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
229 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
230 |
print(status_update)
|
231 |
|
|
|
|
|
232 |
# 5. Submit
|
233 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
234 |
try:
|
@@ -273,6 +300,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
273 |
return status_message, results_df
|
274 |
|
275 |
|
|
|
276 |
# --- Build Gradio Interface using Blocks ---
|
277 |
with gr.Blocks() as demo:
|
278 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
11 |
from youtube_transcript_api import YouTubeTranscriptApi
|
12 |
import re
|
13 |
|
14 |
+
|
15 |
class YouTubeVideoTool:
|
16 |
def __init__(self):
|
17 |
self.name = "youtube_video_tool"
|
|
|
42 |
except Exception as e:
|
43 |
return f"Error processing YouTube video: {str(e)}"
|
44 |
|
45 |
+
|
46 |
+
|
47 |
def _extract_video_id(self, url_or_id):
|
48 |
"""Extract YouTube video ID from various URL formats or return the ID if already provided."""
|
49 |
# Handle direct video ID
|
|
|
81 |
|
82 |
# --- Basic Agent Definition ---
|
83 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
84 |
+
|
85 |
+
|
86 |
class BasicAgent:
|
87 |
+
|
88 |
+
|
89 |
def __init__(self, model=None, tools=None):
|
90 |
self.model = model
|
91 |
self.tools = tools if tools is not None else []
|
92 |
self.history = []
|
93 |
+
print(f"BasicAgent initialized with model: {model} and {len(self.tools)} tools.")
|
94 |
|
95 |
+
|
96 |
def __call__(self, question: str) -> str:
|
97 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
98 |
# Implement your agent logic here using self.model and self.tools
|
|
|
100 |
print(f"Agent returning answer: {final_answer[:50]}...")
|
101 |
return final_answer
|
102 |
|
103 |
+
|
104 |
+
|
105 |
def process_question(self, question:str) -> str:
|
106 |
try:
|
107 |
# Check if this is a request about a YouTube video
|
|
|
121 |
return self._formulate_direct_answer(relevant_info, question)
|
122 |
else:
|
123 |
# Use regular search
|
124 |
+
search_results = cached_search(question) if any(isinstance(tool, DuckDuckGoSearchTool) for tool in self.tools) else "No search results available."
|
125 |
relevant_info = self._extract_key_info(search_results, question)
|
126 |
return self._formulate_direct_answer(relevant_info, question)
|
127 |
except Exception as e:
|
|
|
135 |
return self._get_fallback_answer(question)
|
136 |
return self._get_fallback_answer(question)
|
137 |
|
138 |
+
|
139 |
+
|
140 |
def _extract_key_info(self, search_results, question):
|
141 |
# Split results into sentences and find most relevant
|
142 |
sentences = search_results.split('. ')
|
|
|
153 |
# Fallback to first few sentences
|
154 |
return '. '.join(sentences[:2])
|
155 |
|
156 |
+
|
157 |
+
|
158 |
def _formulate_direct_answer(self, relevant_info, question):
|
159 |
+
if self.model:
|
160 |
+
return f"Based on the search: {relevant_info}"
|
161 |
return relevant_info
|
162 |
|
163 |
+
|
164 |
+
|
165 |
def _get_fallback_answer(self, question):
|
166 |
return f"Based on the information available, I cannot provide a specific answer to your question about {question.split()[0:3]}..."
|
167 |
|
|
|
186 |
questions_url = f"{api_url}/questions"
|
187 |
submit_url = f"{api_url}/submit"
|
188 |
|
189 |
+
|
190 |
+
|
191 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
192 |
try:
|
193 |
agent = BasicAgent(model= 'gemini/gemini-2.0-flash-exp', tools=[search_tool, visit_webpage, youtube_tool])
|
|
|
198 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
199 |
print(agent_code)
|
200 |
|
201 |
+
|
202 |
+
|
203 |
# 2. Fetch Questions
|
204 |
print(f"Fetching questions from: {questions_url}")
|
205 |
try:
|
|
|
221 |
print(f"An unexpected error occurred fetching questions: {e}")
|
222 |
return f"An unexpected error occurred fetching questions: {e}", None
|
223 |
|
224 |
+
|
225 |
+
|
226 |
# 3. Run your Agent
|
227 |
results_log = []
|
228 |
answers_payload = []
|
229 |
print(f"Running agent on {len(questions_data)} questions...")
|
230 |
+
for idx, item in enumerate(questions_data):
|
231 |
task_id = item.get("task_id")
|
232 |
question_text = item.get("question")
|
233 |
if not task_id or question_text is None:
|
|
|
247 |
print("Agent did not produce any answers to submit.")
|
248 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
249 |
|
250 |
+
|
251 |
+
|
252 |
# 4. Prepare Submission
|
253 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
254 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
255 |
print(status_update)
|
256 |
|
257 |
+
|
258 |
+
|
259 |
# 5. Submit
|
260 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
261 |
try:
|
|
|
300 |
return status_message, results_df
|
301 |
|
302 |
|
303 |
+
|
304 |
# --- Build Gradio Interface using Blocks ---
|
305 |
with gr.Blocks() as demo:
|
306 |
gr.Markdown("# Basic Agent Evaluation Runner")
|