Spaces:
Sleeping
Sleeping
File size: 8,954 Bytes
065339b b76c831 64dcaa8 b76c831 aa62c4f 065339b b8a3699 aa62c4f b76c831 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 b76c831 64dcaa8 aa62c4f 64dcaa8 4821f3c 8824874 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f 64dcaa8 aa62c4f b8a3699 64dcaa8 b76c831 41c9f53 b76c831 41c9f53 aa62c4f b76c831 aa62c4f b76c831 64dcaa8 b76c831 41c9f53 76a7157 b76c831 aa62c4f b76c831 b8a3699 41c9f53 794e838 b76c831 64dcaa8 065339b 794e838 64dcaa8 b76c831 64dcaa8 b8a3699 64dcaa8 2ab9f5f 64dcaa8 794e838 64dcaa8 794e838 64dcaa8 3c6afdf 794e838 b8a3699 2ab9f5f 794e838 d97628c d0bd726 64dcaa8 2ab9f5f 794e838 065339b aa62c4f 64dcaa8 b8a3699 64dcaa8 065339b 794e838 64dcaa8 794e838 64dcaa8 794e838 b8a3699 065339b 64dcaa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
import requests
import time
import re
from duckduckgo_search import DDGS
from bs4 import BeautifulSoup
# === Model functions ===
def get_full_article(url):
"""Fetch full article content from URL"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
response = requests.get(url, headers=headers, timeout=20, verify=True)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside', 'ads', 'noscript', 'form']):
element.decompose()
article_selectors = [
'article', '.article-content', '.post-content', '.story-body', '.story-content',
'.entry-content', '.content-body', '.article-body', 'main article', 'main .content', 'main',
'[role="main"]', '.main-content', '.page-content', '.text', '.article-text'
]
for selector in article_selectors:
content = soup.select_one(selector)
if content:
paragraphs = content.find_all(['p', 'div'], string=True)
if paragraphs:
text_parts = []
for p in paragraphs:
text = p.get_text(strip=True)
if len(text) > 30:
text_parts.append(text)
full_text = '\n\n'.join(text_parts)
if len(full_text) > 300:
return full_text[:10000]
body_text = soup.get_text(separator='\n\n', strip=True)
body_text = re.sub(r'\n{3,}', '\n\n', body_text)
return body_text[:10000] if len(body_text) > 300 else "[INFO] Could not extract substantial content"
except requests.exceptions.Timeout:
return "[WARNING] Article fetch timeout - using snippet instead"
except requests.exceptions.RequestException:
return "[ERROR] Could not fetch article: Network error"
except Exception as e:
return f"[ERROR] Could not fetch article: {str(e)}"
def search_articles(name: str, max_articles: int = 2) -> str:
keywords = ['owners', 'partners', 'stockholders']
search_query = f'"{name}" ({" AND ".join(keywords)}) site:news'
max_retries = 3
base_delay = 3
for attempt in range(max_retries):
try:
print(f"Search attempt {attempt + 1}: {search_query}")
time.sleep(base_delay * (attempt + 1))
configs = [
{'timeout': 20, 'region': 'us-en', 'safesearch': 'moderate'},
{'timeout': 25, 'region': 'wt-wt', 'safesearch': 'off'},
{'timeout': 30, 'region': None, 'safesearch': 'moderate'}
]
config = configs[min(attempt, len(configs)-1)]
with DDGS(timeout=config['timeout']) as ddgs:
search_params = {
'keywords': search_query,
'max_results': max_articles,
'safesearch': config['safesearch']
}
if config['region']:
search_params['region'] = config['region']
results = list(ddgs.text(**search_params))
print(f"Found {len(results)} results on attempt {attempt + 1}")
if not results:
continue
articles = []
for i, result in enumerate(results, 1):
url = result.get('href', 'No URL')
title = result.get('title', 'No Title')
snippet = result.get('body', 'No snippet available')
if i > 1:
time.sleep(2)
full_text = get_full_article(url)
if any(error in full_text for error in ["[ERROR]", "timeout", "Network error"]):
print(f"Using snippet fallback for article {i}")
content = f"[SNIPPET ONLY]\n{snippet}"
else:
content = full_text
article = f"### {i}. {title}\n"
article += f"[Source]({url})\n\n"
article += f"{content}\n"
articles.append(article)
return "\n---\n".join(articles)
except Exception as e:
print(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < max_retries - 1:
time.sleep(base_delay * (attempt + 2))
else:
return f"[ERROR] Search failed after {max_retries} attempts. Last error: {str(e)}"
return f"[INFO] No articles found for {name}"
def extract_entities(search_results: str) -> str:
"""Extract entities using Mistral 7B endpoint"""
modal_endpoint = "https://msoaresdiego--mistral-llm-endpoint-fastapi-app.modal.run/generate"
# Truncate input to avoid excessive model load
MAX_CHARS = 8000
if len(search_results) > MAX_CHARS:
search_results = search_results[:MAX_CHARS]
prompt = f"""Extract all person names and organization names from the following text. Do not extract products and service names. Only individuals and organizations. Bring the full details of the name in the newspaper article. For example, if only ACME is mentioned as company name, bring only ACME. IF ACME Inc is mentioned as company name, then you have to extract ACME Inc. In addition, define the relationship between the entity and the company that is being searched. For example, is ACME Inc an owner of the company being searched? Then write 'owner'. Is ACME Inc. a funder of the company being searched? Then write 'funder'
Format as:
PERSON: [name] - [relationship]
ORG: [organization name] - [relationship]
Text: {search_results}"""
try:
response = requests.post(
modal_endpoint,
json={"prompt": prompt, "max_tokens": 1000, "temperature": 0.15},
timeout=1000 # Increased timeout
)
if response.status_code == 200:
return response.json().get("response", "No entities extracted")
else:
return f"[ERROR] API Error: {response.status_code} - {response.text}"
except requests.exceptions.Timeout:
return "[ERROR] Entity extraction timeout - please try again"
except Exception as e:
return f"[ERROR] Extraction failed: {str(e)}"
# === Gradio interface functions ===
def search_only(name: str, article_count: int):
if not name.strip():
return "No name provided", ""
try:
start = time.time()
articles_output = search_articles(name.strip(), max_articles=article_count)
elapsed = time.time() - start
results = f"β
Search completed for **{name}** in {elapsed:.1f}s\n\n"
results += articles_output
return results, articles_output
except Exception as e:
return f"[ERROR] Search failed: {str(e)}", ""
def extract_only(stored_results: str):
if not stored_results.strip():
return "No search results available. Please search first."
try:
start = time.time()
entities = extract_entities(stored_results)
elapsed = time.time() - start
return f"β
Extraction completed in {elapsed:.1f}s\n\n{entities}"
except Exception as e:
return f"[ERROR] Extraction failed: {str(e)}"
# === Gradio UI ===
with gr.Blocks(title="Related Entities Finder") as demo:
gr.Markdown("# π Related Entities Finder")
gr.Markdown("Enter a business or project name to search for related articles and extract key entities.")
gr.Markdown("*Note: Full article extraction may take 30β60 seconds. Snippets will be used as fallback if needed.*")
search_state = gr.State("")
with gr.Row():
name_input = gr.Textbox(label="Company/Project Name", placeholder="Enter business or project name")
article_count_slider = gr.Slider(1, 10, value=2, step=1, label="Number of Articles")
with gr.Column():
search_btn = gr.Button("π Search Articles", variant="primary")
extract_btn = gr.Button("π Extract Entities", variant="secondary")
output1 = gr.Markdown(label="Search Results")
output2 = gr.Textbox(
label="Extracted Entities and Relationships",
lines=10,
max_lines=20,
show_copy_button=True
)
search_btn.click(
fn=search_only,
inputs=[name_input, article_count_slider],
outputs=[output1, search_state]
)
extract_btn.click(
fn=extract_only,
inputs=[search_state],
outputs=[output2]
)
if __name__ == "__main__":
demo.launch()
|