File size: 10,785 Bytes
065339b
b76c831
 
 
aa62c4f
065339b
b8a3699
 
aa62c4f
 
b76c831
aa62c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b76c831
aa62c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a3699
b76c831
 
b8a3699
b76c831
aa62c4f
 
b76c831
aa62c4f
 
 
b76c831
aa62c4f
b76c831
 
 
aa62c4f
 
b76c831
 
 
 
aa62c4f
 
 
b76c831
b8a3699
 
b76c831
794e838
b76c831
794e838
 
065339b
794e838
 
b76c831
b8a3699
 
 
794e838
aa62c4f
794e838
 
 
 
 
 
b8a3699
2ab9f5f
794e838
 
 
 
 
 
b8a3699
794e838
b8a3699
794e838
aa62c4f
794e838
 
 
3c6afdf
794e838
b8a3699
 
 
2ab9f5f
794e838
d97628c
d0bd726
aa62c4f
2ab9f5f
794e838
 
 
065339b
aa62c4f
b8a3699
aa62c4f
 
d97628c
d0bd726
aa62c4f
 
 
 
 
 
 
 
 
 
 
 
794e838
 
065339b
794e838
065339b
794e838
 
 
 
 
 
 
 
b8a3699
 
065339b
 
aa62c4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import gradio as gr
import requests
import time
from duckduckgo_search import DDGS
from bs4 import BeautifulSoup

# === Model functions ===

def get_full_article(url):
    """Fetch full article content from URL"""
    try:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
            'Accept-Language': 'en-US,en;q=0.5',
            'Accept-Encoding': 'gzip, deflate',
            'Connection': 'keep-alive',
            'Upgrade-Insecure-Requests': '1'
        }
        
        response = requests.get(url, headers=headers, timeout=15, verify=False)
        response.raise_for_status()
        
        soup = BeautifulSoup(response.content, 'html.parser')
        
        # Remove unwanted elements
        for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside', 'ads', 'noscript', 'form']):
            element.decompose()
        
        # Try common article selectors in order of preference
        article_selectors = [
            'article',
            '.article-content', '.post-content', '.story-body', '.story-content',
            '.entry-content', '.content-body', '.article-body',
            'main article', 'main .content', 'main',
            '[role="main"]', '.main-content', '.page-content',
            '.text', '.article-text'
        ]
        
        for selector in article_selectors:
            content = soup.select_one(selector)
            if content:
                # Extract paragraphs for better formatting
                paragraphs = content.find_all(['p', 'div'], string=True)
                if paragraphs:
                    text_parts = []
                    for p in paragraphs:
                        text = p.get_text(strip=True)
                        if len(text) > 30:  # Filter out short/empty paragraphs
                            text_parts.append(text)
                    
                    full_text = '\n\n'.join(text_parts)
                    if len(full_text) > 300:  # Only return if substantial content
                        return full_text[:10000]  # Limit to 10000 chars
        
        # Fallback to body text
        body_text = soup.get_text(separator='\n\n', strip=True)
        # Clean up multiple newlines
        import re
        body_text = re.sub(r'\n{3,}', '\n\n', body_text)
        
        return body_text[:10000] if len(body_text) > 300 else "Could not extract substantial content"
        
    except requests.exceptions.Timeout:
        return "Article fetch timeout - using snippet instead"
    except requests.exceptions.RequestException as e:
        return f"Could not fetch article: Network error"
    except Exception as e:
        return f"Could not fetch article: {str(e)}"


def search_articles(name: str) -> str:
    """Search for newspaper articles containing the name and keywords using DuckDuckGo"""
    keywords = ['founders', 'partners', 'funders', 'owners']
    search_query = f'"{name}" ({" OR ".join(keywords)}) site:news'
    
    max_retries = 3
    base_delay = 3
    
    for attempt in range(max_retries):
        try:
            print(f"Search attempt {attempt + 1}: {search_query}")
            
            # Progressive delay
            delay = base_delay * (attempt + 1)
            time.sleep(delay)
            
            # Use different configurations for each attempt
            configs = [
                {'timeout': 20, 'region': 'us-en', 'safesearch': 'moderate'},
                {'timeout': 25, 'region': 'wt-wt', 'safesearch': 'off'},
                {'timeout': 30, 'region': None, 'safesearch': 'moderate'}
            ]
            
            config = configs[min(attempt, len(configs)-1)]
            
            with DDGS(timeout=config['timeout']) as ddgs:
                search_params = {
                    'keywords': search_query,
                    'max_results': 2,
                    'safesearch': config['safesearch']
                }
                if config['region']:
                    search_params['region'] = config['region']
                
                results = list(ddgs.text(**search_params))
                print(f"Found {len(results)} results on attempt {attempt + 1}")
            
            if not results:
                if attempt < max_retries - 1:
                    print(f"No results found, retrying with different parameters...")
                    continue
                return f"No articles found for {name} after {max_retries} attempts"

            articles = []
            for i, result in enumerate(results, 1):
                url = result.get('href', 'No URL')
                title = result.get('title', 'No Title')
                snippet = result.get('body', 'No snippet available')
                
                print(f"Processing article {i}: {title}")
                print(f"URL: {url}")
                
                # Add delay between article fetches
                if i > 1:
                    time.sleep(2)
                
                # Try to get full article
                full_text = get_full_article(url)
                
                # Use snippet as fallback if full article extraction fails
                if any(error in full_text for error in ["Could not fetch", "timeout", "Network error"]):
                    print(f"Using snippet fallback for article {i}")
                    content = f"[SNIPPET ONLY - Full article unavailable]\n{snippet}"
                else:
                    content = full_text
                
                article = f"**{i}. {title}**\n"
                article += f"Source: {url}\n\n"
                article += f"{content}\n"
                articles.append(article)

            return "\n" + "="*80 + "\n".join(articles)
            
        except Exception as e:
            error_msg = f"Attempt {attempt + 1} failed: {str(e)}"
            print(error_msg)
            
            if attempt < max_retries - 1:
                wait_time = base_delay * (attempt + 2)
                print(f"Waiting {wait_time} seconds before retry...")
                time.sleep(wait_time)
            else:
                return f"[ERROR] Search failed after {max_retries} attempts. Last error: {str(e)}"


def extract_entities(search_results: str) -> str:
    """Extract entities using Mistral 7B endpoint"""
    modal_endpoint = "https://msoaresdiego--mistral-llm-endpoint-fastapi-app.modal.run/generate"
    prompt = f"""Extract all person names and organization names from the following text. Do not extract products and service names. Only individuals and organizations. Bring the full details of the name in the newspaper article. For example, if only ACME is mentioned as company name, bring only ACME. IF ACME Inc is mentioned as company name, then you have to extract ACME Inc. In addition, define the relationship between the entity and the company that is being searched. For example, is ACME Inc an owner of the company being searched? Then write 'owner'. Is ACME Inc. a funder of the company being searched? Then write 'funder' 

Format as:
PERSON: [name] - [relationship]
ORG: [organization name] - [relationship]

Text: {search_results}"""
    
    try:
        response = requests.post(
            modal_endpoint,
            json={"prompt": prompt, "max_tokens": 1500, "temperature": 0.15},
            timeout=30
        )
        if response.status_code == 200:
            return response.json().get("response", "No entities extracted")
        else:
            return f"[ERROR] API Error: {response.status_code} - {response.text}"
    except requests.exceptions.Timeout:
        return "[ERROR] Entity extraction timeout - please try again"
    except Exception as e:
        return f"[ERROR] Extraction failed: {str(e)}"


# === Gradio interface functions ===

def search_only(name: str):
    """Perform search only and return results"""
    if not name.strip():
        return "No name provided", ""
    
    try:
        search_start = time.time()
        articles_output = search_articles(name.strip())
        search_time = time.time() - search_start
        
        search_results = f"Search completed for: {name} in {search_time:.1f}s\n\n"
        search_results += articles_output
        
        return search_results, articles_output  # Return both display and raw results
    except Exception as e:
        error_msg = f"[ERROR] Search failed: {str(e)}"
        return error_msg, ""


def extract_only(stored_search_results: str):
    """Extract entities from stored search results"""
    if not stored_search_results.strip():
        return "No search results available. Please search first."
    
    try:
        extract_start = time.time()
        entities = extract_entities(stored_search_results)
        extract_time = time.time() - extract_start
        
        extraction_results = f"Entity extraction completed in {extract_time:.1f}s\n\n"
        extraction_results += entities
        
        return extraction_results
    except Exception as e:
        return f"[ERROR] Extraction failed: {str(e)}"


# === Gradio UI ===

with gr.Blocks(title="Related Entities Finder") as demo:
    gr.Markdown("# 🔎 Related Entities Finder")
    gr.Markdown("Enter a business or project name to search for related articles and extract key entities.")
    gr.Markdown("*Note: Full article extraction may take 30-60 seconds. Snippets will be used as fallback if needed.*")

    # State to store search results between operations
    search_state = gr.State("")

    with gr.Row():
        name_input = gr.Textbox(label="Company/Project Name", placeholder="Enter business or project name")
        with gr.Column():
            search_btn = gr.Button("🔍 Search Articles", variant="primary", size="lg")
            extract_btn = gr.Button("📋 Extract Entities", variant="secondary", size="lg")
    
    with gr.Column():
        output1 = gr.Textbox(
            label="Search Results", 
            lines=40, 
            max_lines=100,
            show_copy_button=True
        )
        output2 = gr.Textbox(
            label="Extracted Entities and Relationships", 
            lines=10, 
            max_lines=20,
            show_copy_button=True
        )
    
    # Search button click
    search_btn.click(
        fn=search_only,
        inputs=[name_input],
        outputs=[output1, search_state]
    )
    
    # Extract button click
    extract_btn.click(
        fn=extract_only,
        inputs=[search_state],
        outputs=[output2]
    )


if __name__ == "__main__":
    demo.launch(share=False, server_name="0.0.0.0")