File size: 56,594 Bytes
642907a 262aca8 be9d670 262aca8 642907a be9d670 642907a f219f0a be9d670 642907a 262aca8 642907a f219f0a be9d670 642907a f219f0a b935477 f219f0a 642907a f219f0a f4eb0a2 f219f0a be9d670 00ab4f8 be9d670 00ab4f8 be9d670 b935477 00ab4f8 b935477 00ab4f8 bfcd620 c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a f219f0a c3e313a bfcd620 be9d670 bfcd620 be9d670 bfcd620 642907a be9d670 c3e313a be9d670 c3e313a f219f0a c3e313a f219f0a c3e313a be9d670 f219f0a be9d670 00ab4f8 be9d670 f219f0a be9d670 b935477 be9d670 b935477 00ab4f8 b935477 00ab4f8 b935477 be9d670 00ab4f8 be9d670 00ab4f8 be9d670 00ab4f8 be9d670 c3e313a f219f0a be9d670 f219f0a be9d670 f219f0a be9d670 c3e313a f219f0a be9d670 f219f0a be9d670 c3e313a f219f0a be9d670 f219f0a c3e313a f219f0a c3e313a f219f0a be9d670 f219f0a be9d670 f219f0a be9d670 f219f0a 642907a f219f0a 642907a 262aca8 f219f0a b935477 642907a 262aca8 f219f0a 642907a 262aca8 642907a 262aca8 bfcd620 be9d670 642907a bfcd620 642907a f219f0a 642907a f219f0a 642907a 262aca8 f219f0a 642907a 262aca8 f219f0a 642907a 057e151 be9d670 642907a f219f0a 642907a f219f0a 642907a 262aca8 f219f0a 642907a 262aca8 f219f0a 642907a 057e151 be9d670 642907a 262aca8 642907a 262aca8 642907a 057e151 be9d670 642907a f219f0a 262aca8 642907a f219f0a 642907a 262aca8 f219f0a 642907a 262aca8 642907a 262aca8 642907a be9d670 642907a bfcd620 262aca8 bfcd620 262aca8 bfcd620 057e151 be9d670 bfcd620 262aca8 bfcd620 262aca8 bfcd620 057e151 be9d670 bfcd620 262aca8 bfcd620 262aca8 bfcd620 057e151 be9d670 bfcd620 262aca8 bfcd620 262aca8 bfcd620 057e151 be9d670 bfcd620 262aca8 bfcd620 262aca8 bfcd620 057e151 be9d670 bfcd620 00ab4f8 f219f0a bfcd620 00ab4f8 f219f0a bfcd620 262aca8 bfcd620 be9d670 bfcd620 262aca8 f219f0a 262aca8 bfcd620 262aca8 f219f0a bfcd620 f219f0a bfcd620 c3e313a bfcd620 00ab4f8 f219f0a 00ab4f8 f219f0a 00ab4f8 f219f0a 00ab4f8 f219f0a 00ab4f8 f219f0a 00ab4f8 f219f0a 00ab4f8 f219f0a 00ab4f8 f219f0a 00ab4f8 f219f0a bfcd620 f219f0a bfcd620 c3e313a 262aca8 f219f0a 262aca8 f219f0a 262aca8 c3e313a b935477 c3e313a f219f0a b935477 c3e313a f219f0a c3e313a b18cfa8 c3e313a b18cfa8 c3e313a a544d54 c3e313a a544d54 b18cfa8 a544d54 c3e313a 262aca8 642907a 262aca8 c3e313a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 |
"""
Research Tracker MCP Server
A clean, simple MCP server that provides research inference utilities.
Exposes functions to infer research metadata from paper URLs, repository links,
or research names using embedded inference logic.
Key Features:
- Author inference from papers and repositories
- Cross-platform resource discovery (papers, code, models, datasets)
- Research metadata extraction (names, dates, licenses, organizations)
- URL classification and relationship mapping
- Comprehensive research ecosystem analysis
All functions are optimized for MCP usage with clear type hints and docstrings.
"""
import os
import re
import logging
import time
from urllib.parse import urlparse, quote
from typing import List, Dict, Any, Optional, Union
from functools import wraps
from datetime import datetime, timedelta
import gradio as gr
import requests
import feedparser
from bs4 import BeautifulSoup
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Configuration
REQUEST_TIMEOUT = 30
MAX_RETRIES = 3
RETRY_DELAY = 1 # seconds
CACHE_TTL = 3600 # 1 hour cache TTL
MAX_URL_LENGTH = 2048
RATE_LIMIT_WINDOW = 60 # seconds
RATE_LIMIT_CALLS = 30 # max calls per window
ARXIV_API_BASE = "http://export.arxiv.org/api/query"
HUGGINGFACE_API_BASE = "https://huggingface.co/api"
HF_TOKEN = os.environ.get("HF_TOKEN")
GITHUB_AUTH = os.environ.get("GITHUB_AUTH")
# Allowed domains for security
ALLOWED_DOMAINS = {
"arxiv.org",
"huggingface.co",
"github.com",
"github.io",
"raw.githubusercontent.com"
}
if not HF_TOKEN:
logger.warning("HF_TOKEN not found in environment variables")
# Enhanced cache with TTL for scraping results
_scrape_cache = {} # {url: {"data": ..., "timestamp": ...}}
_rate_limit_tracker = {} # {key: [timestamps]}
class MCPError(Exception):
"""Base exception for MCP-related errors"""
pass
class ValidationError(MCPError):
"""Input validation error"""
pass
class ExternalAPIError(MCPError):
"""External API call error"""
pass
def validate_url(url: str) -> bool:
"""Validate URL for security and correctness"""
if not url or len(url) > MAX_URL_LENGTH:
return False
try:
parsed = urlparse(url)
if not parsed.scheme or not parsed.netloc:
return False
# Extract domain
domain = parsed.netloc.lower()
if ":" in domain:
domain = domain.split(":")[0]
# Check against allowed domains
return any(domain.endswith(allowed) for allowed in ALLOWED_DOMAINS)
except Exception:
return False
def rate_limit(key: str):
"""Simple rate limiting decorator"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
now = time.time()
# Clean old timestamps
if key in _rate_limit_tracker:
_rate_limit_tracker[key] = [
ts for ts in _rate_limit_tracker[key]
if now - ts < RATE_LIMIT_WINDOW
]
else:
_rate_limit_tracker[key] = []
# Check rate limit
if len(_rate_limit_tracker[key]) >= RATE_LIMIT_CALLS:
raise MCPError(f"Rate limit exceeded. Max {RATE_LIMIT_CALLS} calls per {RATE_LIMIT_WINDOW} seconds.")
_rate_limit_tracker[key].append(now)
return func(*args, **kwargs)
return wrapper
return decorator
def make_github_request(endpoint: str, headers: Optional[Dict] = None) -> Optional[requests.Response]:
"""Make GitHub API request with proper authentication and error handling"""
if not GITHUB_AUTH:
return None
url = f"https://api.github.com{endpoint}" if endpoint.startswith("/") else endpoint
if not headers:
headers = {}
headers["Authorization"] = f"Bearer {GITHUB_AUTH}"
try:
response = requests.get(url, headers=headers, timeout=REQUEST_TIMEOUT)
if response.status_code == 200:
return response
elif response.status_code == 404:
return None
else:
logger.warning(f"GitHub API returned {response.status_code} for {url}")
return None
except requests.exceptions.RequestException as e:
logger.warning(f"GitHub API request failed: {e}")
return None
def cached_request(url: str, timeout: int = REQUEST_TIMEOUT) -> Optional[requests.Response]:
"""Make HTTP request with caching, retries, and validation"""
if not validate_url(url):
raise ValidationError(f"Invalid or disallowed URL: {url}")
# Check cache
if url in _scrape_cache:
cache_entry = _scrape_cache[url]
# Handle both old and new cache formats
if isinstance(cache_entry, dict) and "timestamp" in cache_entry:
if time.time() - cache_entry["timestamp"] < CACHE_TTL:
logger.debug(f"Cache hit for {url}")
return cache_entry["data"]
else:
# Old cache format, clear it
del _scrape_cache[url]
# Make request with retries
for attempt in range(MAX_RETRIES):
try:
response = requests.get(url, timeout=timeout)
if response.status_code == 200:
# Cache successful response
_scrape_cache[url] = {
"data": response,
"timestamp": time.time()
}
return response
elif response.status_code == 404:
return None
else:
logger.warning(f"HTTP {response.status_code} for {url}")
except requests.exceptions.Timeout:
logger.warning(f"Timeout on attempt {attempt + 1} for {url}")
except requests.exceptions.RequestException as e:
logger.warning(f"Request error on attempt {attempt + 1}: {e}")
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY * (attempt + 1)) # Exponential backoff
raise ExternalAPIError(f"Failed to fetch {url} after {MAX_RETRIES} attempts")
# Utility functions
def get_arxiv_id(paper_url: str) -> Optional[str]:
"""Extract arXiv ID from paper URL"""
if "arxiv.org/abs/" in paper_url:
return paper_url.split("arxiv.org/abs/")[1].split('.pdf')[0]
elif "arxiv.org/pdf/" in paper_url:
return paper_url.split("arxiv.org/pdf/")[1].split('.pdf')[0]
elif "huggingface.co/papers" in paper_url:
return paper_url.split("huggingface.co/papers/")[1]
return None
def clean_url(url):
"""Clean malformed URLs by removing trailing HTML fragments and invalid characters"""
if not url:
return url
# Remove HTML closing tags and attributes that often get attached
import re
# Remove anything after quote marks followed by HTML-like content
url = re.sub(r'["\']\s*>.*$', '', url)
# Remove trailing HTML fragments
url = re.sub(r'["\']?\s*</.*$', '', url)
# Remove trailing punctuation and whitespace
url = url.rstrip('",;\'"()<>[] \t\n\r')
# Basic URL validation - should start with http/https and contain valid characters
if not re.match(r'^https?://[^\s<>"\'\[\]{}|\\^`]+$', url):
return None
return url
def is_valid_paper_url(url):
"""Check if a URL is a valid paper URL, excluding badges and non-paper content"""
if not url:
return False
url_lower = url.lower()
# Exclude badges, shields, and other non-paper URLs
if any(pattern in url_lower for pattern in [
'img.shields.io', 'badge', 'logo', 'icon', 'button',
'github.com/microsoft/trellis/issues', '/releases/', '/actions/',
'/wiki/', '/tree/', '/blob/', '.svg', '.png', '.jpg', '.gif'
]):
return False
# Valid paper URL patterns
if any(pattern in url_lower for pattern in [
'arxiv.org/abs/', 'arxiv.org/pdf/', 'huggingface.co/papers/'
]):
return True
return False
def select_best_github_repo(github_links, context_keywords=None):
"""Select the best GitHub repository from a list of GitHub URLs"""
if not github_links:
return None
if context_keywords is None:
context_keywords = []
# Score repositories based on various factors
scored_repos = []
for link in github_links:
if not link:
continue
score = 0
link_lower = link.lower()
# Skip user profiles (github.com/username without repo)
path_parts = link.split('github.com/')[-1].split('/')
if len(path_parts) < 2 or not path_parts[1]:
continue # Skip user profiles
# Skip issue/PR/wiki pages - prefer main repo
if any(x in link_lower for x in ['/issues', '/pull', '/wiki', '/releases', '/actions']):
score -= 10
# Prefer repositories that match context keywords
for keyword in context_keywords:
if keyword.lower() in link_lower:
score += 20
# Prefer Microsoft/official org repos if in a Microsoft context
if 'microsoft' in link_lower and any(k.lower() in link_lower for k in context_keywords):
score += 15
# Prefer main branch/root repo URLs
if link_lower.endswith('.git') or '/tree/' not in link_lower:
score += 5
scored_repos.append((score, link))
if scored_repos:
# Return the highest scored repository
scored_repos.sort(key=lambda x: x[0], reverse=True)
return scored_repos[0][1]
return None
def extract_links_from_soup(soup, text):
"""Extract both HTML and markdown links from soup and text"""
html_links = [link.get("href") for link in soup.find_all("a") if link.get("href")]
link_pattern = re.compile(r"\[.*?\]\((.*?)\)")
markdown_links = link_pattern.findall(text)
# Also extract direct URLs that aren't in markdown format
url_pattern = re.compile(r'https?://[^\s\)]+')
direct_urls = url_pattern.findall(text)
# Combine all links, clean them, and remove duplicates
all_links = html_links + markdown_links + direct_urls
cleaned_links = [clean_url(link) for link in all_links if link]
return list(set([link for link in cleaned_links if link]))
def scrape_huggingface_paper_page(paper_url: str) -> Dict[str, Any]:
"""
Scrape HuggingFace paper page to find associated resources with caching
Returns:
Dict containing found resources: {
"models": [], "datasets": [], "spaces": [], "code": []
}
"""
# Default empty resources
empty_resources = {"models": [], "datasets": [], "spaces": [], "code": []}
if not paper_url or "huggingface.co/papers" not in paper_url:
return empty_resources
try:
response = cached_request(paper_url)
if not response:
return empty_resources
soup = BeautifulSoup(response.text, "html.parser")
# Find all links on the page
links = set() # Use set to avoid duplicates
for link in soup.find_all("a", href=True):
href = link["href"]
# Convert relative URLs to absolute
if href.startswith("/"):
href = "https://huggingface.co" + href
elif href.startswith("huggingface.co"):
href = "https://" + href
links.add(href)
# Categorize links efficiently
resources = {"models": [], "datasets": [], "spaces": [], "code": []}
for link in links:
if "huggingface.co/" in link:
if "/models/" in link:
resources["models"].append(link)
elif "/datasets/" in link:
resources["datasets"].append(link)
elif "/spaces/" in link:
resources["spaces"].append(link)
elif "github.com" in link:
resources["code"].append(link)
# Cache the result
_scrape_cache[paper_url] = resources
logger.info(f"Scraped {len(resources['models'])} models, {len(resources['datasets'])} datasets, "
f"{len(resources['spaces'])} spaces, {len(resources['code'])} code repos from {paper_url}")
except ValidationError as e:
logger.error(f"Validation error scraping HF paper page: {e}")
return empty_resources
except ExternalAPIError as e:
logger.error(f"External API error scraping HF paper page: {e}")
return empty_resources
except Exception as e:
logger.error(f"Unexpected error scraping HF paper page: {e}")
return empty_resources
return resources
def create_row_data(input_data: str) -> Dict[str, Any]:
"""Create standardized row data structure from input."""
row_data = {
"Name": None,
"Authors": [],
"Paper": None,
"Code": None,
"Project": None,
"Space": None,
"Model": None,
"Dataset": None,
"Orgs": [],
"License": None,
"Date": None,
}
# Classify input based on URL patterns
if input_data.startswith(("http://", "https://")):
if "arxiv.org" in input_data or "huggingface.co/papers" in input_data:
row_data["Paper"] = input_data
elif "github.com" in input_data:
row_data["Code"] = input_data
elif "github.io" in input_data:
row_data["Project"] = input_data
elif "huggingface.co/spaces" in input_data:
row_data["Space"] = input_data
elif "huggingface.co/datasets" in input_data:
row_data["Dataset"] = input_data
elif "huggingface.co/" in input_data:
row_data["Model"] = input_data
else:
row_data["Paper"] = input_data
else:
row_data["Name"] = input_data
return row_data
# Core inference functions
def infer_paper_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer paper URL from row data"""
if row_data.get("Paper") is not None:
try:
url = urlparse(row_data["Paper"])
if url.scheme in ["http", "https"]:
# Convert arXiv PDF to abs format
if "arxiv.org/pdf/" in row_data["Paper"]:
new_url = row_data["Paper"].replace("/pdf/", "/abs/").replace(".pdf", "")
logger.info(f"Paper {new_url} inferred from {row_data['Paper']}")
return new_url
# If this is an arXiv URL, try HuggingFace papers first for better resource discovery
if "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = row_data["Paper"].split("arxiv.org/abs/")[1]
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
try:
# Test if HuggingFace paper page exists and has content
response = cached_request(hf_paper_url)
if response and len(response.text) > 1000: # Basic check for content
logger.info(f"Paper {hf_paper_url} inferred from arXiv (HuggingFace preferred)")
return hf_paper_url
except (ValidationError, ExternalAPIError):
pass # Fall back to original arXiv URL
return row_data["Paper"]
except Exception:
pass
# Check if paper is in other fields
for field in ["Project", "Code", "Model", "Space", "Dataset", "Name"]:
if row_data.get(field) is not None:
if "arxiv" in row_data[field] or "huggingface.co/papers" in row_data[field]:
logger.info(f"Paper {row_data[field]} inferred from {field}")
return row_data[field]
# Try following project link and look for paper
if row_data.get("Project") is not None:
try:
response = cached_request(row_data["Project"])
if response:
soup = BeautifulSoup(response.text, "html.parser")
for link in soup.find_all("a"):
href = link.get("href")
if href and is_valid_paper_url(href):
logger.info(f"Paper {href} inferred from Project")
return href
except (ValidationError, ExternalAPIError) as e:
logger.debug(f"Failed to scrape project page: {e}")
# Try GitHub README parsing
if row_data.get("Code") is not None and "github.com" in row_data["Code"]:
try:
repo = row_data["Code"].split("github.com/")[1]
# First try with GitHub API if available
if GITHUB_AUTH:
readme_response = make_github_request(f"/repos/{repo}/readme")
if readme_response:
readme = readme_response.json()
if readme.get("type") == "file" and readme.get("download_url"):
response = cached_request(readme["download_url"])
if response:
soup = BeautifulSoup(response.text, "html.parser")
links = extract_links_from_soup(soup, response.text)
for link in links:
if link and is_valid_paper_url(link):
logger.info(f"Paper {link} inferred from Code (via GitHub API)")
return link
# Fallback: try scraping the GitHub page directly
try:
github_url = row_data["Code"]
response = cached_request(github_url)
if response:
soup = BeautifulSoup(response.text, "html.parser")
links = extract_links_from_soup(soup, response.text)
for link in links:
if link and is_valid_paper_url(link):
logger.info(f"Paper {link} inferred from Code (via GitHub scraping)")
return link
except (ValidationError, ExternalAPIError):
pass
except Exception:
pass
return None
def infer_name_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer research name from row data"""
if row_data.get("Name") is not None:
return row_data["Name"]
# Try to get name using arxiv api
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id is not None:
try:
search_params = "id_list=" + arxiv_id
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
if response.entries and len(response.entries) > 0:
entry = response.entries[0]
if hasattr(entry, "title"):
name = entry.title.strip()
logger.info(f"Name {name} inferred from Paper")
return name
except Exception:
pass
# Try to get from code repo
if row_data.get("Code") is not None and "github.com" in row_data["Code"]:
try:
repo = row_data["Code"].split("github.com/")[1]
name = repo.split("/")[1]
logger.info(f"Name {name} inferred from Code")
return name
except Exception:
pass
# Try to get from project page
if row_data.get("Project") is not None:
try:
r = requests.get(row_data["Project"], timeout=REQUEST_TIMEOUT)
soup = BeautifulSoup(r.text, "html.parser")
if soup.title is not None:
name = soup.title.string.strip()
logger.info(f"Name {name} inferred from Project")
return name
except Exception:
pass
return None
def infer_code_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer code repository URL from row data"""
if row_data.get("Code") is not None:
try:
url = urlparse(row_data["Code"])
if url.scheme in ["http", "https"] and "github" in url.netloc:
return row_data["Code"]
except Exception:
pass
# Check if code is in other fields
for field in ["Project", "Paper", "Model", "Space", "Dataset", "Name"]:
if row_data.get(field) is not None:
try:
url = urlparse(row_data[field])
if url.scheme in ["http", "https"] and "github.com" in url.netloc:
logger.info(f"Code {row_data[field]} inferred from {field}")
return row_data[field]
except Exception:
pass
# Try to infer code from project page
if row_data.get("Project") is not None:
try:
r = requests.get(row_data["Project"], timeout=REQUEST_TIMEOUT)
soup = BeautifulSoup(r.text, "html.parser")
links = extract_links_from_soup(soup, r.text)
# Filter GitHub links
github_links = []
for link in links:
if link:
try:
url = urlparse(link)
if url.scheme in ["http", "https"] and "github.com" in url.netloc:
github_links.append(link)
except Exception:
pass
if github_links:
# Extract context keywords from the project page
context_keywords = []
if soup.title:
context_keywords.extend(soup.title.get_text().split())
# Use URL parts as context
project_url_parts = row_data["Project"].split('/')
context_keywords.extend([part for part in project_url_parts if part and len(part) > 2])
best_repo = select_best_github_repo(github_links, context_keywords)
if best_repo:
logger.info(f"Code {best_repo} inferred from Project")
return best_repo
except Exception:
pass
# Try scraping HuggingFace paper page for code links
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["code"]:
code_url = resources["code"][0] # Take first code repo found
logger.info(f"Code {code_url} inferred from HuggingFace paper page")
return code_url
# If we have arXiv URL, try the HuggingFace version first
elif "arxiv.org/abs/" in row_data["Paper"] and arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["code"]:
code_url = resources["code"][0]
logger.info(f"Code {code_url} inferred from HuggingFace paper page (via arXiv)")
return code_url
# Fallback: Try GitHub search for papers
if row_data.get("Paper") is not None and GITHUB_AUTH:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
try:
search_endpoint = f"/search/repositories?q={arxiv_id}&sort=stars&order=desc"
search_response = make_github_request(search_endpoint)
if search_response:
search_results = search_response.json()
if "items" in search_results and len(search_results["items"]) > 0:
repo = search_results["items"][0]
repo_url = repo["html_url"]
logger.info(f"Code {repo_url} inferred from Paper (GitHub search)")
return repo_url
except Exception as e:
logger.warning(f"Failed to infer code from paper: {e}")
return None
def infer_authors_from_row(row_data: Dict[str, Any]) -> List[str]:
"""Infer authors from row data"""
authors = row_data.get("Authors", [])
if not isinstance(authors, list):
authors = []
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id is not None:
try:
search_params = "id_list=" + arxiv_id
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
if response.entries and len(response.entries) > 0:
entry = response.entries[0]
if hasattr(entry, 'authors'):
api_authors = entry.authors
for author in api_authors:
if author is None or not hasattr(author, "name"):
continue
if author.name not in authors and author.name != "arXiv api core":
authors.append(author.name)
logger.info(f"Author {author.name} inferred from Paper")
except Exception as e:
logger.warning(f"Failed to fetch authors from arXiv: {e}")
return authors
def infer_date_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer publication date from row data"""
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id is not None:
try:
search_params = "id_list=" + arxiv_id
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
if response.entries and len(response.entries) > 0:
entry = response.entries[0]
date = getattr(entry, "published", None) or getattr(entry, "updated", None)
if date is not None:
logger.info(f"Date {date} inferred from Paper")
return date
except Exception as e:
logger.warning(f"Failed to fetch date from arXiv: {e}")
return None
def infer_model_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer HuggingFace model from row data by scraping paper page"""
if row_data.get("Paper") is not None:
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["models"]:
model_url = resources["models"][0] # Take first model found
logger.info(f"Model {model_url} inferred from HuggingFace paper page")
return model_url
# If we have arXiv URL, try the HuggingFace version
elif "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["models"]:
model_url = resources["models"][0]
logger.info(f"Model {model_url} inferred from HuggingFace paper page (via arXiv)")
return model_url
return None
def infer_dataset_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer HuggingFace dataset from row data by scraping paper page"""
if row_data.get("Paper") is not None:
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["datasets"]:
dataset_url = resources["datasets"][0] # Take first dataset found
logger.info(f"Dataset {dataset_url} inferred from HuggingFace paper page")
return dataset_url
# If we have arXiv URL, try the HuggingFace version
elif "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["datasets"]:
dataset_url = resources["datasets"][0]
logger.info(f"Dataset {dataset_url} inferred from HuggingFace paper page (via arXiv)")
return dataset_url
return None
def infer_space_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer HuggingFace space from row data by scraping paper page"""
if row_data.get("Paper") is not None:
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["spaces"]:
space_url = resources["spaces"][0] # Take first space found
logger.info(f"Space {space_url} inferred from HuggingFace paper page")
return space_url
# If we have arXiv URL, try the HuggingFace version
elif "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["spaces"]:
space_url = resources["spaces"][0]
logger.info(f"Space {space_url} inferred from HuggingFace paper page (via arXiv)")
return space_url
# Fallback: try to infer from model using HF API
if row_data.get("Model") is not None:
try:
model_id = row_data["Model"].split("huggingface.co/")[1]
url = f"{HUGGINGFACE_API_BASE}/spaces?models=" + model_id
r = requests.get(url, timeout=REQUEST_TIMEOUT)
if r.status_code == 200:
spaces = r.json()
if len(spaces) > 0:
space = spaces[0]["id"]
space_url = "https://huggingface.co/spaces/" + space
logger.info(f"Space {space} inferred from Model")
return space_url
except Exception as e:
logger.warning(f"Failed to infer space from model: {e}")
return None
def infer_license_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer license information from row data"""
if row_data.get("Code") is not None and GITHUB_AUTH and "github.com" in row_data["Code"]:
try:
repo = row_data["Code"].split("github.com/")[1]
r = make_github_request(f"/repos/{repo}/license")
if r:
license_data = r.json()
if "license" in license_data and license_data["license"] is not None:
license_name = license_data["license"]["name"]
logger.info(f"License {license_name} inferred from Code")
return license_name
except Exception as e:
logger.warning(f"Failed to infer license from code: {e}")
return None
def infer_field_type(value: str) -> str:
"""Classify the type of research-related URL or input"""
if value is None:
return "Unknown"
if "arxiv.org/" in value or "huggingface.co/papers" in value or ".pdf" in value:
return "Paper"
if "github.com" in value:
return "Code"
if "huggingface.co/spaces" in value:
return "Space"
if "huggingface.co/datasets" in value:
return "Dataset"
if "github.io" in value:
return "Project"
if "huggingface.co/" in value:
try:
path = value.split("huggingface.co/")[1]
path_parts = path.strip("/").split("/")
if len(path_parts) >= 2 and not path.startswith(("spaces/", "datasets/", "papers/")):
return "Model"
except (IndexError, AttributeError):
pass
return "Unknown"
# MCP tool functions
@rate_limit("mcp_tools")
def infer_authors(input_data: str) -> List[str]:
"""
Infer authors from research paper or project information.
This tool extracts author names from:
- arXiv papers (via API)
- HuggingFace paper pages (via scraping)
- GitHub repositories (via API when GITHUB_AUTH is set)
Args:
input_data (str): A URL, paper title, or other research-related input.
Examples:
- "https://arxiv.org/abs/2103.00020"
- "https://huggingface.co/papers/2103.00020"
- "https://github.com/openai/CLIP"
Returns:
List[str]: A list of author names as strings, or empty list if no authors found.
Example: ["Alec Radford", "Jong Wook Kim", "Chris Hallacy"]
Raises:
ValidationError: If input_data is invalid or malformed
ExternalAPIError: If external API calls fail after retries
"""
if not input_data or not input_data.strip():
return []
try:
cleaned_input = input_data.strip()
row_data = create_row_data(cleaned_input)
authors = infer_authors_from_row(row_data)
valid_authors = []
for author in authors:
if isinstance(author, str) and len(author.strip()) > 0:
cleaned_author = author.strip()
if 2 <= len(cleaned_author) <= 100:
valid_authors.append(cleaned_author)
logger.info(f"Successfully inferred {len(valid_authors)} authors from input")
return valid_authors
except Exception as e:
logger.error(f"Error inferring authors: {e}")
return []
@rate_limit("mcp_tools")
def infer_paper_url(input_data: str) -> str:
"""
Infer the paper URL from various research-related inputs.
This tool finds paper URLs by:
- Validating existing paper URLs
- Searching GitHub repositories for paper links
- Converting between arXiv and HuggingFace paper formats
- Searching by paper title when provided
Args:
input_data (str): A URL, repository link, or other research-related input
Examples:
- "https://github.com/openai/CLIP"
- "Vision Transformer"
- "https://huggingface.co/spaces/example"
Returns:
str: The paper URL (typically arXiv or Hugging Face papers), or empty string if not found
Example: "https://huggingface.co/papers/2103.00020"
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_paper_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring paper: {e}")
return ""
@rate_limit("mcp_tools")
def infer_code_repository(input_data: str) -> str:
"""
Infer the code repository URL from research-related inputs.
This tool discovers code repositories by:
- Scraping HuggingFace paper pages for GitHub links
- Searching GitHub for repositories by paper title
- Extracting repository links from project pages
Args:
input_data (str): A URL, paper link, or other research-related input
Examples:
- "https://arxiv.org/abs/2010.11929"
- "https://huggingface.co/papers/2010.11929"
- "Vision Transformer"
Returns:
str: The code repository URL (typically GitHub), or empty string if not found
Example: "https://github.com/google-research/vision_transformer"
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_code_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring code: {e}")
return ""
def infer_research_name(input_data: str) -> str:
"""
Infer the research paper or project name from various inputs.
Args:
input_data (str): A URL, repository link, or other research-related input
Returns:
str: The research name/title, or empty string if not found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_name_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring name: {e}")
return ""
@rate_limit("mcp_tools")
def classify_research_url(input_data: str) -> str:
"""
Classify the type of research-related URL or input.
This tool identifies resource types based on URL patterns:
- Paper: arXiv, HuggingFace papers, PDF files
- Code: GitHub repositories
- Model: HuggingFace model pages
- Dataset: HuggingFace dataset pages
- Space: HuggingFace space/demo pages
- Project: GitHub.io pages
- Unknown: Unrecognized patterns
Args:
input_data (str): The URL or input to classify
Examples:
- "https://arxiv.org/abs/2103.00020" -> "Paper"
- "https://github.com/openai/CLIP" -> "Code"
- "https://huggingface.co/openai/clip-vit-base-patch32" -> "Model"
Returns:
str: The field type: "Paper", "Code", "Space", "Model", "Dataset", "Project", or "Unknown"
"""
if not input_data or not input_data.strip():
return "Unknown"
try:
field = infer_field_type(input_data)
return field if field else "Unknown"
except Exception as e:
logger.error(f"Error classifying URL: {e}")
return "Unknown"
def infer_publication_date(input_data: str) -> str:
"""
Infer publication date from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: Publication date as string (YYYY-MM-DD format), or empty string if not found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_date_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring publication date: {e}")
return ""
def infer_model(input_data: str) -> str:
"""
Infer associated HuggingFace model from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: HuggingFace model URL, or empty string if no model found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_model_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring model: {e}")
return ""
def infer_dataset(input_data: str) -> str:
"""
Infer associated HuggingFace dataset from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: HuggingFace dataset URL, or empty string if no dataset found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_dataset_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring dataset: {e}")
return ""
def infer_space(input_data: str) -> str:
"""
Infer associated HuggingFace space from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: HuggingFace space URL, or empty string if no space found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_space_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring space: {e}")
return ""
def infer_license(input_data: str) -> str:
"""
Infer license information from research repository or project.
Args:
input_data (str): A URL, repository link, or other research-related input
Returns:
str: License name/type, or empty string if no license found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_license_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring license: {e}")
return ""
def discover_all_urls(input_data: str) -> Dict[str, Any]:
"""
Discover ALL related URLs from the input by building a complete resource graph.
This performs multiple rounds of discovery to find all interconnected resources.
"""
discovered = {
"paper": None,
"code": None,
"project": None,
"model": None,
"dataset": None,
"space": None,
"hf_resources": None
}
# Initialize with input
row_data = create_row_data(input_data.strip())
# Round 1: Direct inferences from input
if row_data.get("Paper"):
discovered["paper"] = row_data["Paper"]
if row_data.get("Code"):
discovered["code"] = row_data["Code"]
if row_data.get("Project"):
discovered["project"] = row_data["Project"]
if row_data.get("Model"):
discovered["model"] = row_data["Model"]
if row_data.get("Dataset"):
discovered["dataset"] = row_data["Dataset"]
if row_data.get("Space"):
discovered["space"] = row_data["Space"]
# Round 2: Cross-inferences - keep discovering until no new URLs found
max_rounds = 3
for round_num in range(max_rounds):
found_new = False
# Try to find paper from code if we have code but no paper
if discovered["code"] and not discovered["paper"]:
temp_row = {"Code": discovered["code"], "Paper": None, "Project": discovered["project"]}
paper = infer_paper_from_row(temp_row)
if paper and paper != discovered["paper"]:
discovered["paper"] = paper
found_new = True
# Try to find code from paper if we have paper but no code
if discovered["paper"] and not discovered["code"]:
temp_row = {"Paper": discovered["paper"], "Code": None, "Project": discovered["project"]}
code = infer_code_from_row(temp_row)
if code and code != discovered["code"]:
discovered["code"] = code
found_new = True
# Try to find code from project if we have project but no code
if discovered["project"] and not discovered["code"]:
temp_row = {"Project": discovered["project"], "Code": None, "Paper": discovered["paper"]}
code = infer_code_from_row(temp_row)
if code and code != discovered["code"]:
discovered["code"] = code
found_new = True
# Scrape HuggingFace paper page for additional resources
if discovered["paper"] and not discovered["hf_resources"]:
arxiv_id = get_arxiv_id(discovered["paper"])
if "huggingface.co/papers" in discovered["paper"]:
discovered["hf_resources"] = scrape_huggingface_paper_page(discovered["paper"])
found_new = True
elif arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
discovered["hf_resources"] = scrape_huggingface_paper_page(hf_paper_url)
if discovered["hf_resources"] and any(discovered["hf_resources"].values()):
found_new = True
# Extract additional resources from HF scraping
if discovered["hf_resources"]:
if not discovered["model"] and discovered["hf_resources"]["models"]:
discovered["model"] = discovered["hf_resources"]["models"][0]
found_new = True
if not discovered["dataset"] and discovered["hf_resources"]["datasets"]:
discovered["dataset"] = discovered["hf_resources"]["datasets"][0]
found_new = True
if not discovered["space"] and discovered["hf_resources"]["spaces"]:
discovered["space"] = discovered["hf_resources"]["spaces"][0]
found_new = True
if not discovered["code"] and discovered["hf_resources"]["code"]:
discovered["code"] = discovered["hf_resources"]["code"][0]
found_new = True
if not found_new:
break
return discovered
@rate_limit("mcp_tools")
def find_research_relationships(input_data: str) -> Dict[str, Any]:
"""
Find ALL related research resources across platforms for comprehensive analysis.
Uses a multi-round discovery approach to build a complete resource graph.
This is a comprehensive tool that combines all individual inference tools to provide
a complete picture of a research project's ecosystem. It discovers:
- Paper URLs (arXiv, HuggingFace)
- Code repositories (GitHub)
- Models, datasets, and demo spaces (HuggingFace)
- Author information and publication dates
- License information
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
Dict[str, Any]: Dictionary containing all discovered related resources
"""
if not input_data or not input_data.strip():
return {"error": "Input data cannot be empty", "success_count": 0, "total_inferences": 10}
try:
cleaned_input = input_data.strip()
logger.info(f"Finding research relationships for: {cleaned_input}")
# Initialize results
relationships = {
"paper": None,
"code": None,
"name": None,
"authors": [],
"date": None,
"model": None,
"dataset": None,
"space": None,
"license": None,
"field_type": None,
"success_count": 0,
"total_inferences": 10
}
# Phase 1: Discover all URLs by building complete resource graph
discovered_urls = discover_all_urls(cleaned_input)
# Phase 2: Create comprehensive row data with all discovered URLs
complete_row_data = {
"Name": None,
"Authors": [],
"Paper": discovered_urls["paper"],
"Code": discovered_urls["code"],
"Project": discovered_urls["project"],
"Space": discovered_urls["space"],
"Model": discovered_urls["model"],
"Dataset": discovered_urls["dataset"],
"Orgs": [],
"License": None,
"Date": None,
}
# Phase 3: Perform all inferences using complete information
# Paper
if complete_row_data["Paper"]:
relationships["paper"] = complete_row_data["Paper"]
relationships["success_count"] += 1
# Code
if complete_row_data["Code"]:
relationships["code"] = complete_row_data["Code"]
relationships["success_count"] += 1
# Name inference (try all available sources)
name = infer_name_from_row(complete_row_data)
if name:
relationships["name"] = name
relationships["success_count"] += 1
# Authors inference
authors = infer_authors_from_row(complete_row_data)
if authors:
relationships["authors"] = authors
relationships["success_count"] += 1
# Date inference
date = infer_date_from_row(complete_row_data)
if date:
relationships["date"] = date
relationships["success_count"] += 1
# Model
if complete_row_data["Model"]:
relationships["model"] = complete_row_data["Model"]
relationships["success_count"] += 1
# Dataset
if complete_row_data["Dataset"]:
relationships["dataset"] = complete_row_data["Dataset"]
relationships["success_count"] += 1
# Space
if complete_row_data["Space"]:
relationships["space"] = complete_row_data["Space"]
relationships["success_count"] += 1
# License inference
license_info = infer_license_from_row(complete_row_data)
if license_info:
relationships["license"] = license_info
relationships["success_count"] += 1
# Field type inference
field_type = infer_field_type(cleaned_input)
if field_type and field_type != "Unknown":
relationships["field_type"] = field_type
relationships["success_count"] += 1
logger.info(f"Research relationship analysis completed: {relationships['success_count']}/{relationships['total_inferences']} successful")
return relationships
except Exception as e:
logger.error(f"Error finding research relationships: {e}")
return {"error": str(e), "success_count": 0, "total_inferences": 10}
def format_list_output(items):
"""Format list items for display"""
if not items or not isinstance(items, list):
return "None"
return "\n".join([f"β’ {item}" for item in items])
def process_research_relationships(input_data):
"""Process research input and return formatted results"""
if not input_data or not input_data.strip():
return "Please enter a valid URL or research name", "", "", "", "", "", "", "", "", ""
try:
result = find_research_relationships(input_data.strip())
# Extract individual fields with fallback to empty string
paper = result.get("paper", "") or ""
code = result.get("code", "") or ""
name = result.get("name", "") or ""
authors = format_list_output(result.get("authors", []))
date = result.get("date", "") or ""
model = result.get("model", "") or ""
dataset = result.get("dataset", "") or ""
space = result.get("space", "") or ""
license_info = result.get("license", "") or ""
field_type = result.get("field_type", "") or ""
return paper, code, name, authors, date, model, dataset, space, license_info, field_type
except Exception as e:
error_msg = f"Error processing input: {str(e)}"
return error_msg, "", "", "", "", "", "", "", "", ""
# Create Gradio interface with both UI and MCP tool exposure
with gr.Blocks(title="Research Tracker MCP Server") as demo:
gr.Markdown("# π¬ Research Tracker MCP Server")
gr.Markdown("""
**MCP Server for AI Research Intelligence** - This interface demonstrates the `find_research_relationships` tool, which combines all available MCP inference tools into a comprehensive analysis.
## Individual MCP Tools Available:
Each output field below represents a separate MCP tool that can be used independently:
- `infer_paper_url` β Paper URL
- `infer_code_repository` β Code Repository
- `infer_research_name` β Research Name
- `infer_authors` β Authors
- `infer_publication_date` β Publication Date
- `infer_model` β HuggingFace Model
- `infer_dataset` β HuggingFace Dataset
- `infer_space` β HuggingFace Space
- `infer_license` β License
- `classify_research_url` β Field Type
π‘ **For programmatic access**: Use the "Use via API or MCP" button below to integrate these tools with Claude or other AI assistants.
""")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Demo Input",
placeholder="https://arxiv.org/abs/2506.18787",
lines=2,
info="Paper URL, repository URL, or project page"
)
submit_btn = gr.Button("π Demonstrate find_research_relationships", variant="primary")
gr.Markdown("## Research Relationships")
with gr.Row():
with gr.Column():
paper_output = gr.Textbox(label="Paper URL", interactive=False)
code_output = gr.Textbox(label="Code Repository", interactive=False)
name_output = gr.Textbox(label="Research Name", interactive=False)
authors_output = gr.Textbox(label="Authors", lines=3, interactive=False)
with gr.Column():
date_output = gr.Textbox(label="Publication Date", interactive=False)
model_output = gr.Textbox(label="Hugging Face Model", interactive=False)
dataset_output = gr.Textbox(label="Hugging Face Dataset", interactive=False)
with gr.Column():
space_output = gr.Textbox(label="Hugging Face Space", interactive=False)
license_output = gr.Textbox(label="License", interactive=False)
field_type_output = gr.Textbox(label="Field Type", interactive=False)
# Connect the interface with examples
submit_btn.click(
fn=process_research_relationships,
inputs=[input_text],
outputs=[
paper_output, code_output, name_output, authors_output,
date_output, model_output, dataset_output,
space_output, license_output, field_type_output
]
)
# Add examples using Gradio's built-in system
gr.Examples(
examples=[
["https://arxiv.org/abs/2506.18787"],
["https://huggingface.co/papers/2010.11929"],
["https://github.com/facebookresearch/segment-anything"],
["https://microsoft.github.io/TRELLIS/"]
],
inputs=[input_text],
outputs=[
paper_output, code_output, name_output, authors_output,
date_output, model_output, dataset_output,
space_output, license_output, field_type_output
],
fn=process_research_relationships,
cache_examples=False,
label="Example Inputs"
)
# Also trigger on Enter key
input_text.submit(
fn=process_research_relationships,
inputs=[input_text],
outputs=[
paper_output, code_output, name_output, authors_output,
date_output, model_output, dataset_output,
space_output, license_output, field_type_output
]
)
# Expose all core functions as MCP tools
gr.api(infer_authors)
gr.api(infer_paper_url)
gr.api(infer_code_repository)
gr.api(infer_research_name)
gr.api(classify_research_url)
gr.api(infer_publication_date)
gr.api(infer_model)
gr.api(infer_dataset)
gr.api(infer_space)
gr.api(infer_license)
gr.api(find_research_relationships)
if __name__ == "__main__":
logger.info("Starting Research Tracker MCP Server")
demo.launch(mcp_server=True, share=False)
|