Spaces:
Sleeping
Sleeping
test: add memory monitor
Browse files
app.py
CHANGED
@@ -609,148 +609,1078 @@ def load_all_data(image_root, pkl_root):
|
|
609 |
default_image_name = "christmas-imagenet"
|
610 |
|
611 |
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
721 |
|
722 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
723 |
|
|
|
724 |
if __name__ == "__main__":
|
725 |
-
#
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
|
|
|
|
|
|
730 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
|
732 |
-
|
|
|
733 |
try:
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
logging.info("Caches cleared during teardown")
|
749 |
-
),
|
750 |
-
# Configure timeouts
|
751 |
-
api_open_timeout=60,
|
752 |
-
api_call_timeout=300,
|
753 |
-
)
|
754 |
except Exception as e:
|
755 |
-
|
756 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
default_image_name = "christmas-imagenet"
|
610 |
|
611 |
|
612 |
+
with gr.Blocks(
|
613 |
+
theme=gr.themes.Citrus(),
|
614 |
+
css="""
|
615 |
+
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
616 |
+
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
617 |
+
""",
|
618 |
+
) as demo:
|
619 |
+
with gr.Row():
|
620 |
+
with gr.Column():
|
621 |
+
# Left View: Image selection and click handling
|
622 |
+
gr.Markdown("## Select input image and patch on the image")
|
623 |
+
image_selector = gr.Dropdown(
|
624 |
+
choices=list(data_dict.keys()),
|
625 |
+
value=default_image_name,
|
626 |
+
label="Select Image",
|
627 |
+
)
|
628 |
+
image_display = gr.Image(
|
629 |
+
value=data_dict[default_image_name]["image"],
|
630 |
+
type="pil",
|
631 |
+
interactive=True,
|
632 |
+
)
|
633 |
+
|
634 |
+
# Update image display when a new image is selected
|
635 |
+
image_selector.change(
|
636 |
+
fn=lambda img_name: data_dict[img_name]["image"],
|
637 |
+
inputs=image_selector,
|
638 |
+
outputs=image_display,
|
639 |
+
)
|
640 |
+
image_display.select(
|
641 |
+
fn=highlight_grid, inputs=[image_selector], outputs=[image_display]
|
642 |
+
)
|
643 |
+
|
644 |
+
with gr.Column():
|
645 |
+
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
646 |
+
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
647 |
+
model_selector = gr.Dropdown(
|
648 |
+
choices=model_options,
|
649 |
+
value=model_options[0],
|
650 |
+
label="Select adapted model (MaPLe)",
|
651 |
+
)
|
652 |
+
init_plot = plot_activation_distribution(
|
653 |
+
None, default_image_name, model_options[0]
|
654 |
+
)
|
655 |
+
neuron_plot = gr.Plot(
|
656 |
+
label="Neuron Activation", value=init_plot, show_label=False
|
657 |
+
)
|
658 |
+
|
659 |
+
image_selector.change(
|
660 |
+
fn=plot_activation_distribution,
|
661 |
+
inputs=[image_selector, model_selector],
|
662 |
+
outputs=neuron_plot,
|
663 |
+
)
|
664 |
+
image_display.select(
|
665 |
+
fn=plot_activation_distribution,
|
666 |
+
inputs=[image_selector, model_selector],
|
667 |
+
outputs=neuron_plot,
|
668 |
+
)
|
669 |
+
model_selector.change(
|
670 |
+
fn=load_image, inputs=[image_selector], outputs=image_display
|
671 |
+
)
|
672 |
+
model_selector.change(
|
673 |
+
fn=plot_activation_distribution,
|
674 |
+
inputs=[image_selector, model_selector],
|
675 |
+
outputs=neuron_plot,
|
676 |
+
)
|
677 |
+
|
678 |
+
with gr.Row():
|
679 |
+
with gr.Column():
|
680 |
+
radio_names = get_init_radio_options(default_image_name, model_options[0])
|
681 |
+
|
682 |
+
feautre_idx = radio_names[0].split("-")[-1]
|
683 |
+
markdown_display = gr.Markdown(
|
684 |
+
f"## Segmentation mask for the selected SAE latent - {feautre_idx}"
|
685 |
+
)
|
686 |
+
init_seg, init_tops, init_values = show_activation_heatmap(
|
687 |
+
default_image_name, radio_names[0], "CLIP"
|
688 |
+
)
|
689 |
+
|
690 |
+
gr.Markdown("### Localize SAE latent activation using CLIP")
|
691 |
+
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
|
692 |
+
init_seg_maple, _, _ = show_activation_heatmap(
|
693 |
+
default_image_name, radio_names[0], model_options[0]
|
694 |
+
)
|
695 |
+
gr.Markdown("### Localize SAE latent activation using MaPLE")
|
696 |
+
seg_mask_display_maple = gr.Image(
|
697 |
+
value=init_seg_maple, type="pil", show_label=False
|
698 |
+
)
|
699 |
+
|
700 |
+
with gr.Column():
|
701 |
+
gr.Markdown("## Top activating SAE latent index")
|
702 |
+
|
703 |
+
radio_choices = gr.Radio(
|
704 |
+
choices=radio_names,
|
705 |
+
label="Top activating SAE latent",
|
706 |
+
interactive=True,
|
707 |
+
value=radio_names[0],
|
708 |
+
)
|
709 |
+
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
|
710 |
+
|
711 |
+
markdown_display_2 = gr.Markdown(
|
712 |
+
f"## Top reference images for the selected SAE latent - {feautre_idx}"
|
713 |
+
)
|
714 |
+
|
715 |
+
gr.Markdown("### ImageNet")
|
716 |
+
top_image_1 = gr.Image(
|
717 |
+
value=init_tops[0], type="pil", label="ImageNet", show_label=False
|
718 |
+
)
|
719 |
+
act_value_1 = gr.Markdown(init_values[0])
|
720 |
+
|
721 |
+
gr.Markdown("### ImageNet-Sketch")
|
722 |
+
top_image_2 = gr.Image(
|
723 |
+
value=init_tops[1],
|
724 |
+
type="pil",
|
725 |
+
label="ImageNet-Sketch",
|
726 |
+
show_label=False,
|
727 |
+
)
|
728 |
+
act_value_2 = gr.Markdown(init_values[1])
|
729 |
|
730 |
+
gr.Markdown("### Caltech101")
|
731 |
+
top_image_3 = gr.Image(
|
732 |
+
value=init_tops[2], type="pil", label="Caltech101", show_label=False
|
733 |
+
)
|
734 |
+
act_value_3 = gr.Markdown(init_values[2])
|
735 |
+
|
736 |
+
image_display.select(
|
737 |
+
fn=update_radio_options,
|
738 |
+
inputs=[image_selector, model_selector],
|
739 |
+
outputs=[radio_choices],
|
740 |
+
)
|
741 |
+
|
742 |
+
model_selector.change(
|
743 |
+
fn=update_radio_options,
|
744 |
+
inputs=[image_selector, model_selector],
|
745 |
+
outputs=[radio_choices],
|
746 |
+
)
|
747 |
+
|
748 |
+
image_selector.select(
|
749 |
+
fn=update_radio_options,
|
750 |
+
inputs=[image_selector, model_selector],
|
751 |
+
outputs=[radio_choices],
|
752 |
+
)
|
753 |
+
|
754 |
+
radio_choices.change(
|
755 |
+
fn=update_all,
|
756 |
+
inputs=[image_selector, radio_choices, toggle_btn, model_selector],
|
757 |
+
outputs=[
|
758 |
+
seg_mask_display,
|
759 |
+
seg_mask_display_maple,
|
760 |
+
top_image_1,
|
761 |
+
top_image_2,
|
762 |
+
top_image_3,
|
763 |
+
act_value_1,
|
764 |
+
act_value_2,
|
765 |
+
act_value_3,
|
766 |
+
markdown_display,
|
767 |
+
markdown_display_2,
|
768 |
+
],
|
769 |
+
)
|
770 |
+
|
771 |
+
toggle_btn.change(
|
772 |
+
fn=show_activation_heatmap_clip,
|
773 |
+
inputs=[image_selector, radio_choices, toggle_btn],
|
774 |
+
outputs=[
|
775 |
+
seg_mask_display,
|
776 |
+
top_image_1,
|
777 |
+
top_image_2,
|
778 |
+
top_image_3,
|
779 |
+
act_value_1,
|
780 |
+
act_value_2,
|
781 |
+
act_value_3,
|
782 |
+
],
|
783 |
+
)
|
784 |
+
|
785 |
+
# Launch the app
|
786 |
+
# demo.queue()
|
787 |
+
# demo.launch()
|
788 |
|
789 |
+
|
790 |
if __name__ == "__main__":
|
791 |
+
demo.queue() # Enable queuing for better handling of concurrent users
|
792 |
+
demo.launch(
|
793 |
+
server_name="0.0.0.0", # Allow external access
|
794 |
+
server_port=7860,
|
795 |
+
share=False, # Set to True if you want to create a public URL
|
796 |
+
show_error=True,
|
797 |
+
# Optimize concurrency
|
798 |
+
max_threads=8, # Adjust based on your CPU cores
|
799 |
)
|
800 |
+
import gzip
|
801 |
+
import os
|
802 |
+
import pickle
|
803 |
+
from glob import glob
|
804 |
+
from time import sleep
|
805 |
+
|
806 |
+
from functools import lru_cache
|
807 |
+
import concurrent.futures
|
808 |
+
from typing import Dict, Tuple, List
|
809 |
+
|
810 |
+
import gradio as gr
|
811 |
+
import numpy as np
|
812 |
+
import plotly.graph_objects as go
|
813 |
+
import torch
|
814 |
+
from PIL import Image, ImageDraw
|
815 |
+
from plotly.subplots import make_subplots
|
816 |
+
|
817 |
+
IMAGE_SIZE = 400
|
818 |
+
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
|
819 |
+
GRID_NUM = 14
|
820 |
+
pkl_root = "./data/out"
|
821 |
+
preloaded_data = {}
|
822 |
+
|
823 |
+
|
824 |
+
# Global cache for data
|
825 |
+
_CACHE = {
|
826 |
+
'data_dict': {},
|
827 |
+
'sae_data_dict': {},
|
828 |
+
'model_data': {},
|
829 |
+
'segmasks': {},
|
830 |
+
'top_images': {}
|
831 |
+
}
|
832 |
+
|
833 |
+
def load_all_data(image_root: str, pkl_root: str) -> Tuple[Dict, Dict]:
|
834 |
+
"""Load all data with optimized parallel processing."""
|
835 |
+
# Load images in parallel
|
836 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
837 |
+
image_files = glob(f"{image_root}/*")
|
838 |
+
future_to_file = {
|
839 |
+
executor.submit(_load_image_file, image_file): image_file
|
840 |
+
for image_file in image_files
|
841 |
+
}
|
842 |
+
|
843 |
+
for future in concurrent.futures.as_completed(future_to_file):
|
844 |
+
image_file = future_to_file[future]
|
845 |
+
image_name = os.path.basename(image_file).split(".")[0]
|
846 |
+
result = future.result()
|
847 |
+
if result is not None:
|
848 |
+
_CACHE['data_dict'][image_name] = result
|
849 |
+
|
850 |
+
# Load SAE data
|
851 |
+
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
|
852 |
+
_CACHE['sae_data_dict']["mean_acts"] = pickle.load(f)
|
853 |
+
|
854 |
+
# Load mean act values in parallel
|
855 |
+
datasets = ["imagenet", "imagenet-sketch", "caltech101"]
|
856 |
+
_CACHE['sae_data_dict']["mean_act_values"] = {}
|
857 |
+
|
858 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
859 |
+
future_to_dataset = {
|
860 |
+
executor.submit(_load_mean_act_values, dataset): dataset
|
861 |
+
for dataset in datasets
|
862 |
+
}
|
863 |
+
|
864 |
+
for future in concurrent.futures.as_completed(future_to_dataset):
|
865 |
+
dataset = future_to_dataset[future]
|
866 |
+
result = future.result()
|
867 |
+
if result is not None:
|
868 |
+
_CACHE['sae_data_dict']["mean_act_values"][dataset] = result
|
869 |
+
|
870 |
+
return _CACHE['data_dict'], _CACHE['sae_data_dict']
|
871 |
|
872 |
+
def _load_image_file(image_file: str) -> Dict:
|
873 |
+
"""Helper function to load a single image file."""
|
874 |
try:
|
875 |
+
image = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE))
|
876 |
+
return {
|
877 |
+
"image": image,
|
878 |
+
"image_path": image_file,
|
879 |
+
}
|
880 |
+
except Exception as e:
|
881 |
+
print(f"Error loading {image_file}: {e}")
|
882 |
+
return None
|
883 |
+
|
884 |
+
def _load_mean_act_values(dataset: str) -> np.ndarray:
|
885 |
+
"""Helper function to load mean act values for a dataset."""
|
886 |
+
try:
|
887 |
+
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
|
888 |
+
return pickle.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
889 |
except Exception as e:
|
890 |
+
print(f"Error loading mean act values for {dataset}: {e}")
|
891 |
+
return None
|
892 |
+
|
893 |
+
@lru_cache(maxsize=1024)
|
894 |
+
def get_data(image_name: str, model_name: str) -> np.ndarray:
|
895 |
+
"""Cached function to get model data."""
|
896 |
+
cache_key = f"{model_name}_{image_name}"
|
897 |
+
if cache_key not in _CACHE['model_data']:
|
898 |
+
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
|
899 |
+
with gzip.open(data_dir, "rb") as f:
|
900 |
+
_CACHE['model_data'][cache_key] = pickle.load(f)
|
901 |
+
return _CACHE['model_data'][cache_key]
|
902 |
+
|
903 |
+
@lru_cache(maxsize=1024)
|
904 |
+
def get_activation_distribution(image_name: str, model_type: str) -> np.ndarray:
|
905 |
+
"""Cached function to get activation distribution."""
|
906 |
+
activation = get_data(image_name, model_type)[0]
|
907 |
+
noisy_features_indices = (
|
908 |
+
(_CACHE['sae_data_dict']["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
|
909 |
+
)
|
910 |
+
activation[:, noisy_features_indices] = 0
|
911 |
+
return activation
|
912 |
+
|
913 |
+
@lru_cache(maxsize=1024)
|
914 |
+
def get_segmask(selected_image: str, slider_value: int, model_type: str) -> np.ndarray:
|
915 |
+
"""Cached function to get segmentation mask."""
|
916 |
+
cache_key = f"{selected_image}_{slider_value}_{model_type}"
|
917 |
+
if cache_key not in _CACHE['segmasks']:
|
918 |
+
image = _CACHE['data_dict'][selected_image]["image"]
|
919 |
+
sae_act = get_data(selected_image, model_type)[0]
|
920 |
+
temp = sae_act[:, slider_value]
|
921 |
+
|
922 |
+
mask = torch.Tensor(temp[1:].reshape(14, 14)).view(1, 1, 14, 14)
|
923 |
+
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
|
924 |
+
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
|
925 |
+
|
926 |
+
base_opacity = 30
|
927 |
+
image_array = np.array(image)[..., :3]
|
928 |
+
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
929 |
+
rgba_overlay[..., :3] = image_array[..., :3]
|
930 |
+
|
931 |
+
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
|
932 |
+
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
|
933 |
+
rgba_overlay[..., 3] = 255
|
934 |
+
|
935 |
+
_CACHE['segmasks'][cache_key] = rgba_overlay
|
936 |
+
|
937 |
+
return _CACHE['segmasks'][cache_key]
|
938 |
+
|
939 |
+
@lru_cache(maxsize=1024)
|
940 |
+
def get_top_images(slider_value: int, toggle_btn: bool) -> List[Image.Image]:
|
941 |
+
"""Cached function to get top images."""
|
942 |
+
cache_key = f"{slider_value}_{toggle_btn}"
|
943 |
+
if cache_key not in _CACHE['top_images']:
|
944 |
+
dataset_path = "./data/top_images_masked" if toggle_btn else "./data/top_images"
|
945 |
+
paths = [
|
946 |
+
os.path.join(dataset_path, dataset, f"{slider_value}.jpg")
|
947 |
+
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]
|
948 |
+
]
|
949 |
+
|
950 |
+
_CACHE['top_images'][cache_key] = [
|
951 |
+
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
|
952 |
+
for path in paths
|
953 |
+
]
|
954 |
+
|
955 |
+
return _CACHE['top_images'][cache_key]
|
956 |
+
|
957 |
+
|
958 |
+
# def preload_activation(image_name):
|
959 |
+
# for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
|
960 |
+
# image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
|
961 |
+
# with gzip.open(image_file, "rb") as f:
|
962 |
+
# preloaded_data[model] = pickle.load(f)
|
963 |
+
|
964 |
+
|
965 |
+
# def get_activation_distribution(image_name: str, model_type: str):
|
966 |
+
# activation = get_data(image_name, model_type)[0]
|
967 |
+
|
968 |
+
# noisy_features_indices = (
|
969 |
+
# (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
|
970 |
+
# )
|
971 |
+
# activation[:, noisy_features_indices] = 0
|
972 |
+
|
973 |
+
# return activation
|
974 |
+
|
975 |
+
|
976 |
+
def get_grid_loc(evt, image):
|
977 |
+
# Get click coordinates
|
978 |
+
x, y = evt._data["index"][0], evt._data["index"][1]
|
979 |
+
|
980 |
+
cell_width = image.width // GRID_NUM
|
981 |
+
cell_height = image.height // GRID_NUM
|
982 |
+
|
983 |
+
grid_x = x // cell_width
|
984 |
+
grid_y = y // cell_height
|
985 |
+
return grid_x, grid_y, cell_width, cell_height
|
986 |
+
|
987 |
+
|
988 |
+
def highlight_grid(evt: gr.EventData, image_name):
|
989 |
+
image = data_dict[image_name]["image"]
|
990 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
991 |
+
|
992 |
+
highlighted_image = image.copy()
|
993 |
+
draw = ImageDraw.Draw(highlighted_image)
|
994 |
+
box = [
|
995 |
+
grid_x * cell_width,
|
996 |
+
grid_y * cell_height,
|
997 |
+
(grid_x + 1) * cell_width,
|
998 |
+
(grid_y + 1) * cell_height,
|
999 |
+
]
|
1000 |
+
draw.rectangle(box, outline="red", width=3)
|
1001 |
+
|
1002 |
+
return highlighted_image
|
1003 |
+
|
1004 |
+
|
1005 |
+
def load_image(img_name):
|
1006 |
+
return Image.open(data_dict[img_name]["image_path"]).resize(
|
1007 |
+
(IMAGE_SIZE, IMAGE_SIZE)
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
|
1011 |
+
def plot_activations(
|
1012 |
+
all_activation,
|
1013 |
+
tile_activations=None,
|
1014 |
+
grid_x=None,
|
1015 |
+
grid_y=None,
|
1016 |
+
top_k=5,
|
1017 |
+
colors=("blue", "cyan"),
|
1018 |
+
model_name="CLIP",
|
1019 |
+
):
|
1020 |
+
fig = go.Figure()
|
1021 |
+
|
1022 |
+
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
|
1023 |
+
fig.add_trace(
|
1024 |
+
go.Scatter(
|
1025 |
+
x=np.arange(len(activations)),
|
1026 |
+
y=activations,
|
1027 |
+
mode="lines",
|
1028 |
+
name=label,
|
1029 |
+
line=dict(color=color, dash="solid"),
|
1030 |
+
showlegend=True,
|
1031 |
+
)
|
1032 |
+
)
|
1033 |
+
top_neurons = np.argsort(activations)[::-1][:top_k]
|
1034 |
+
for idx in top_neurons:
|
1035 |
+
fig.add_annotation(
|
1036 |
+
x=idx,
|
1037 |
+
y=activations[idx],
|
1038 |
+
text=str(idx),
|
1039 |
+
showarrow=True,
|
1040 |
+
arrowhead=2,
|
1041 |
+
ax=0,
|
1042 |
+
ay=-15,
|
1043 |
+
arrowcolor=color,
|
1044 |
+
opacity=0.7,
|
1045 |
+
)
|
1046 |
+
return fig
|
1047 |
+
|
1048 |
+
label = f"{model_name.split('-')[-0]} Image-level"
|
1049 |
+
fig = _add_scatter_with_annotation(
|
1050 |
+
fig, all_activation, model_name, colors[0], label
|
1051 |
+
)
|
1052 |
+
if tile_activations is not None:
|
1053 |
+
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
|
1054 |
+
fig = _add_scatter_with_annotation(
|
1055 |
+
fig, tile_activations, model_name, colors[1], label
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
fig.update_layout(
|
1059 |
+
title="Activation Distribution",
|
1060 |
+
xaxis_title="SAE latent index",
|
1061 |
+
yaxis_title="Activation Value",
|
1062 |
+
template="plotly_white",
|
1063 |
+
)
|
1064 |
+
fig.update_layout(
|
1065 |
+
legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5)
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
return fig
|
1069 |
+
|
1070 |
+
|
1071 |
+
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
|
1072 |
+
activation = get_activation_distribution(selected_image, model_name)
|
1073 |
+
all_activation = activation.mean(0)
|
1074 |
+
|
1075 |
+
tile_activations = None
|
1076 |
+
grid_x = None
|
1077 |
+
grid_y = None
|
1078 |
+
|
1079 |
+
if evt is not None:
|
1080 |
+
if evt._data is not None:
|
1081 |
+
image = data_dict[selected_image]["image"]
|
1082 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
1083 |
+
token_idx = grid_y * GRID_NUM + grid_x + 1
|
1084 |
+
tile_activations = activation[token_idx]
|
1085 |
+
|
1086 |
+
fig = plot_activations(
|
1087 |
+
all_activation,
|
1088 |
+
tile_activations,
|
1089 |
+
grid_x,
|
1090 |
+
grid_y,
|
1091 |
+
top_k=5,
|
1092 |
+
model_name=model_name,
|
1093 |
+
colors=colors,
|
1094 |
+
)
|
1095 |
+
return fig
|
1096 |
+
|
1097 |
+
|
1098 |
+
def plot_activation_distribution(
|
1099 |
+
evt: gr.EventData, selected_image: str, model_name: str
|
1100 |
+
):
|
1101 |
+
fig = make_subplots(
|
1102 |
+
rows=2,
|
1103 |
+
cols=1,
|
1104 |
+
shared_xaxes=True,
|
1105 |
+
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
fig_clip = get_activations(
|
1109 |
+
evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
|
1110 |
+
)
|
1111 |
+
fig_maple = get_activations(
|
1112 |
+
evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
def _attach_fig(fig, sub_fig, row, col, yref):
|
1116 |
+
for trace in sub_fig.data:
|
1117 |
+
fig.add_trace(trace, row=row, col=col)
|
1118 |
+
|
1119 |
+
for annotation in sub_fig.layout.annotations:
|
1120 |
+
annotation.update(yref=yref)
|
1121 |
+
fig.add_annotation(annotation)
|
1122 |
+
return fig
|
1123 |
+
|
1124 |
+
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
|
1125 |
+
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
|
1126 |
+
|
1127 |
+
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
|
1128 |
+
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
|
1129 |
+
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
|
1130 |
+
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
|
1131 |
+
fig.update_layout(
|
1132 |
+
# height=500,
|
1133 |
+
# title="Activation Distributions",
|
1134 |
+
template="plotly_white",
|
1135 |
+
showlegend=True,
|
1136 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
|
1137 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
1138 |
+
)
|
1139 |
+
|
1140 |
+
return fig
|
1141 |
+
|
1142 |
+
|
1143 |
+
# def get_segmask(selected_image, slider_value, model_type):
|
1144 |
+
# image = data_dict[selected_image]["image"]
|
1145 |
+
# sae_act = get_data(selected_image, model_type)[0]
|
1146 |
+
# temp = sae_act[:, slider_value]
|
1147 |
+
# try:
|
1148 |
+
# mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
|
1149 |
+
# except Exception as e:
|
1150 |
+
# print(sae_act.shape, slider_value)
|
1151 |
+
# mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][
|
1152 |
+
# 0
|
1153 |
+
# ].numpy()
|
1154 |
+
# mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
|
1155 |
+
|
1156 |
+
# base_opacity = 30
|
1157 |
+
# image_array = np.array(image)[..., :3]
|
1158 |
+
# rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
1159 |
+
# rgba_overlay[..., :3] = image_array[..., :3]
|
1160 |
+
|
1161 |
+
# darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
|
1162 |
+
# rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
|
1163 |
+
# rgba_overlay[..., 3] = 255 # Fully opaque
|
1164 |
+
|
1165 |
+
# return rgba_overlay
|
1166 |
+
|
1167 |
+
|
1168 |
+
# def get_top_images(slider_value, toggle_btn):
|
1169 |
+
# def _get_images(dataset_path):
|
1170 |
+
# top_image_paths = [
|
1171 |
+
# os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
|
1172 |
+
# os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
|
1173 |
+
# os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
|
1174 |
+
# ]
|
1175 |
+
# top_images = [
|
1176 |
+
# (
|
1177 |
+
# Image.open(path)
|
1178 |
+
# if os.path.exists(path)
|
1179 |
+
# else Image.new("RGB", (256, 256), (255, 255, 255))
|
1180 |
+
# )
|
1181 |
+
# for path in top_image_paths
|
1182 |
+
# ]
|
1183 |
+
# return top_images
|
1184 |
+
|
1185 |
+
# if toggle_btn:
|
1186 |
+
# top_images = _get_images("./data/top_images_masked")
|
1187 |
+
# else:
|
1188 |
+
# top_images = _get_images("./data/top_images")
|
1189 |
+
# return top_images
|
1190 |
+
|
1191 |
+
|
1192 |
+
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
|
1193 |
+
slider_value = int(slider_value.split("-")[-1])
|
1194 |
+
rgba_overlay = get_segmask(selected_image, slider_value, model_type)
|
1195 |
+
top_images = get_top_images(slider_value, toggle_btn)
|
1196 |
+
|
1197 |
+
act_values = []
|
1198 |
+
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
|
1199 |
+
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
|
1200 |
+
act_value = [str(round(value, 3)) for value in act_value]
|
1201 |
+
act_value = " | ".join(act_value)
|
1202 |
+
out = f"#### Activation values: {act_value}"
|
1203 |
+
act_values.append(out)
|
1204 |
+
|
1205 |
+
return rgba_overlay, top_images, act_values
|
1206 |
+
|
1207 |
+
|
1208 |
+
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
|
1209 |
+
rgba_overlay, top_images, act_values = show_activation_heatmap(
|
1210 |
+
selected_image, slider_value, "CLIP", toggle_btn
|
1211 |
+
)
|
1212 |
+
sleep(0.1)
|
1213 |
+
return (
|
1214 |
+
rgba_overlay,
|
1215 |
+
top_images[0],
|
1216 |
+
top_images[1],
|
1217 |
+
top_images[2],
|
1218 |
+
act_values[0],
|
1219 |
+
act_values[1],
|
1220 |
+
act_values[2],
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
|
1224 |
+
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
|
1225 |
+
slider_value = int(slider_value.split("-")[-1])
|
1226 |
+
rgba_overlay = get_segmask(selected_image, slider_value, model_name)
|
1227 |
+
sleep(0.1)
|
1228 |
+
return rgba_overlay
|
1229 |
+
|
1230 |
+
|
1231 |
+
def get_init_radio_options(selected_image, model_name):
|
1232 |
+
clip_neuron_dict = {}
|
1233 |
+
maple_neuron_dict = {}
|
1234 |
+
|
1235 |
+
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
|
1236 |
+
activations = get_activation_distribution(selected_image, model_name).mean(0)
|
1237 |
+
top_neurons = list(np.argsort(activations)[::-1][:top_k])
|
1238 |
+
for top_neuron in top_neurons:
|
1239 |
+
neuron_dict[top_neuron] = activations[top_neuron]
|
1240 |
+
sorted_dict = dict(
|
1241 |
+
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
|
1242 |
+
)
|
1243 |
+
return sorted_dict
|
1244 |
+
|
1245 |
+
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
|
1246 |
+
maple_neuron_dict = _get_top_actvation(
|
1247 |
+
selected_image, model_name, maple_neuron_dict
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
|
1251 |
+
|
1252 |
+
return radio_choices
|
1253 |
+
|
1254 |
+
|
1255 |
+
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
|
1256 |
+
clip_keys = list(clip_neuron_dict.keys())
|
1257 |
+
maple_keys = list(maple_neuron_dict.keys())
|
1258 |
+
|
1259 |
+
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
|
1260 |
+
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
|
1261 |
+
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
|
1262 |
+
|
1263 |
+
common_keys.sort(
|
1264 |
+
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
|
1265 |
+
)
|
1266 |
+
clip_only_keys.sort(reverse=True)
|
1267 |
+
maple_only_keys.sort(reverse=True)
|
1268 |
+
|
1269 |
+
out = []
|
1270 |
+
out.extend([f"common-{i}" for i in common_keys[:5]])
|
1271 |
+
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
|
1272 |
+
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
|
1273 |
+
|
1274 |
+
return out
|
1275 |
+
|
1276 |
+
|
1277 |
+
def update_radio_options(evt: gr.EventData, selected_image, model_name):
|
1278 |
+
def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
|
1279 |
+
top_neurons = list(np.argsort(activations)[::-1][:top_k])
|
1280 |
+
for top_neuron in top_neurons:
|
1281 |
+
neuron_dict[top_neuron] = activations[top_neuron]
|
1282 |
+
|
1283 |
+
def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
|
1284 |
+
all_activation = get_activation_distribution(selected_image, model_name)
|
1285 |
+
image_activation = all_activation.mean(0)
|
1286 |
+
_sort_and_save_top_k(image_activation, neuron_dict)
|
1287 |
+
|
1288 |
+
if evt is not None:
|
1289 |
+
if evt._data is not None and isinstance(evt._data["index"], list):
|
1290 |
+
image = data_dict[selected_image]["image"]
|
1291 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
1292 |
+
token_idx = grid_y * GRID_NUM + grid_x + 1
|
1293 |
+
tile_activations = all_activation[token_idx]
|
1294 |
+
_sort_and_save_top_k(tile_activations, neuron_dict)
|
1295 |
+
|
1296 |
+
sorted_dict = dict(
|
1297 |
+
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
|
1298 |
+
)
|
1299 |
+
return sorted_dict
|
1300 |
+
|
1301 |
+
clip_neuron_dict = {}
|
1302 |
+
maple_neuron_dict = {}
|
1303 |
+
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
|
1304 |
+
maple_neuron_dict = _get_top_actvation(
|
1305 |
+
evt, selected_image, model_name, maple_neuron_dict
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
clip_keys = list(clip_neuron_dict.keys())
|
1309 |
+
maple_keys = list(maple_neuron_dict.keys())
|
1310 |
+
|
1311 |
+
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
|
1312 |
+
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
|
1313 |
+
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
|
1314 |
+
|
1315 |
+
common_keys.sort(
|
1316 |
+
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
|
1317 |
+
)
|
1318 |
+
clip_only_keys.sort(reverse=True)
|
1319 |
+
maple_only_keys.sort(reverse=True)
|
1320 |
+
|
1321 |
+
out = []
|
1322 |
+
out.extend([f"common-{i}" for i in common_keys[:5]])
|
1323 |
+
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
|
1324 |
+
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
|
1325 |
+
|
1326 |
+
radio_choices = gr.Radio(
|
1327 |
+
choices=out, label="Top activating SAE latent", value=out[0]
|
1328 |
+
)
|
1329 |
+
sleep(0.1)
|
1330 |
+
return radio_choices
|
1331 |
+
|
1332 |
+
|
1333 |
+
def update_markdown(option_value):
|
1334 |
+
latent_idx = int(option_value.split("-")[-1])
|
1335 |
+
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
|
1336 |
+
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
|
1337 |
+
return out_1, out_2
|
1338 |
+
|
1339 |
+
|
1340 |
+
def get_data(image_name, model_name):
|
1341 |
+
pkl_root = "./data/out"
|
1342 |
+
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
|
1343 |
+
with gzip.open(data_dir, "rb") as f:
|
1344 |
+
data = pickle.load(f)
|
1345 |
+
out = data
|
1346 |
+
|
1347 |
+
return out
|
1348 |
+
|
1349 |
+
|
1350 |
+
def update_all(selected_image, slider_value, toggle_btn, model_name):
|
1351 |
+
(
|
1352 |
+
seg_mask_display,
|
1353 |
+
top_image_1,
|
1354 |
+
top_image_2,
|
1355 |
+
top_image_3,
|
1356 |
+
act_value_1,
|
1357 |
+
act_value_2,
|
1358 |
+
act_value_3,
|
1359 |
+
) = show_activation_heatmap_clip(selected_image, slider_value, toggle_btn)
|
1360 |
+
seg_mask_display_maple = show_activation_heatmap_maple(
|
1361 |
+
selected_image, slider_value, model_name
|
1362 |
+
)
|
1363 |
+
markdown_display, markdown_display_2 = update_markdown(slider_value)
|
1364 |
+
|
1365 |
+
return (
|
1366 |
+
seg_mask_display,
|
1367 |
+
seg_mask_display_maple,
|
1368 |
+
top_image_1,
|
1369 |
+
top_image_2,
|
1370 |
+
top_image_3,
|
1371 |
+
act_value_1,
|
1372 |
+
act_value_2,
|
1373 |
+
act_value_3,
|
1374 |
+
markdown_display,
|
1375 |
+
markdown_display_2,
|
1376 |
+
)
|
1377 |
+
|
1378 |
+
|
1379 |
+
def load_all_data(image_root, pkl_root):
|
1380 |
+
image_files = glob(f"{image_root}/*")
|
1381 |
+
data_dict = {}
|
1382 |
+
for image_file in image_files:
|
1383 |
+
image_name = os.path.basename(image_file).split(".")[0]
|
1384 |
+
if image_file not in data_dict:
|
1385 |
+
data_dict[image_name] = {
|
1386 |
+
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
|
1387 |
+
"image_path": image_file,
|
1388 |
+
}
|
1389 |
+
|
1390 |
+
sae_data_dict = {}
|
1391 |
+
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
|
1392 |
+
data = pickle.load(f)
|
1393 |
+
sae_data_dict["mean_acts"] = data
|
1394 |
+
|
1395 |
+
sae_data_dict["mean_act_values"] = {}
|
1396 |
+
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
|
1397 |
+
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
|
1398 |
+
data = pickle.load(f)
|
1399 |
+
sae_data_dict["mean_act_values"][dataset] = data
|
1400 |
+
|
1401 |
+
return data_dict, sae_data_dict
|
1402 |
+
|
1403 |
+
|
1404 |
+
def preload_all_model_data():
|
1405 |
+
"""Preload all model data into memory at startup"""
|
1406 |
+
print("Preloading model data...")
|
1407 |
+
for image_name in data_dict.keys():
|
1408 |
+
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
|
1409 |
+
try:
|
1410 |
+
data = get_data(image_name, model_name)
|
1411 |
+
cache_key = f"{model_name}_{image_name}"
|
1412 |
+
_CACHE['model_data'][cache_key] = data
|
1413 |
+
except Exception as e:
|
1414 |
+
print(f"Error preloading {cache_key}: {e}")
|
1415 |
+
|
1416 |
+
# Add to initialization
|
1417 |
+
preload_all_model_data()
|
1418 |
+
|
1419 |
+
def precompute_activations():
|
1420 |
+
"""Precompute and cache common activation patterns"""
|
1421 |
+
print("Precomputing activations...")
|
1422 |
+
for image_name in data_dict.keys():
|
1423 |
+
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
|
1424 |
+
activation = get_activation_distribution(image_name, model_name)
|
1425 |
+
cache_key = f"activation_{model_name}_{image_name}"
|
1426 |
+
_CACHE['precomputed_activations'][cache_key] = activation.mean(0)
|
1427 |
+
|
1428 |
+
# Add to _CACHE initialization
|
1429 |
+
_CACHE['precomputed_activations'] = {}
|
1430 |
+
|
1431 |
+
# Add to initialization
|
1432 |
+
precompute_activations()
|
1433 |
+
|
1434 |
+
def precompute_segmasks():
|
1435 |
+
"""Precompute common segmentation masks"""
|
1436 |
+
print("Precomputing segmentation masks...")
|
1437 |
+
for image_name in data_dict.keys():
|
1438 |
+
for model_type in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
|
1439 |
+
for slider_value in range(0, 100): # Adjust range as needed
|
1440 |
+
try:
|
1441 |
+
mask = get_segmask(image_name, slider_value, model_type)
|
1442 |
+
cache_key = f"{image_name}_{slider_value}_{model_type}"
|
1443 |
+
_CACHE['segmasks'][cache_key] = mask
|
1444 |
+
except Exception as e:
|
1445 |
+
print(f"Error precomputing mask {cache_key}: {e}")
|
1446 |
+
|
1447 |
+
# Add to initialization
|
1448 |
+
precompute_segmasks()
|
1449 |
+
|
1450 |
+
|
1451 |
+
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
1452 |
+
default_image_name = "christmas-imagenet"
|
1453 |
+
|
1454 |
+
|
1455 |
+
with gr.Blocks(
|
1456 |
+
theme=gr.themes.Citrus(),
|
1457 |
+
css="""
|
1458 |
+
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
1459 |
+
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
1460 |
+
""",
|
1461 |
+
) as demo:
|
1462 |
+
with gr.Row():
|
1463 |
+
with gr.Column():
|
1464 |
+
# Left View: Image selection and click handling
|
1465 |
+
gr.Markdown("## Select input image and patch on the image")
|
1466 |
+
image_selector = gr.Dropdown(
|
1467 |
+
choices=list(data_dict.keys()),
|
1468 |
+
value=default_image_name,
|
1469 |
+
label="Select Image",
|
1470 |
+
)
|
1471 |
+
image_display = gr.Image(
|
1472 |
+
value=data_dict[default_image_name]["image"],
|
1473 |
+
type="pil",
|
1474 |
+
interactive=True,
|
1475 |
+
)
|
1476 |
+
|
1477 |
+
# Update image display when a new image is selected
|
1478 |
+
image_selector.change(
|
1479 |
+
fn=lambda img_name: data_dict[img_name]["image"],
|
1480 |
+
inputs=image_selector,
|
1481 |
+
outputs=image_display,
|
1482 |
+
)
|
1483 |
+
image_display.select(
|
1484 |
+
fn=highlight_grid, inputs=[image_selector], outputs=[image_display]
|
1485 |
+
)
|
1486 |
+
|
1487 |
+
with gr.Column():
|
1488 |
+
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
1489 |
+
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
1490 |
+
model_selector = gr.Dropdown(
|
1491 |
+
choices=model_options,
|
1492 |
+
value=model_options[0],
|
1493 |
+
label="Select adapted model (MaPLe)",
|
1494 |
+
)
|
1495 |
+
init_plot = plot_activation_distribution(
|
1496 |
+
None, default_image_name, model_options[0]
|
1497 |
+
)
|
1498 |
+
neuron_plot = gr.Plot(
|
1499 |
+
label="Neuron Activation", value=init_plot, show_label=False
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
image_selector.change(
|
1503 |
+
fn=plot_activation_distribution,
|
1504 |
+
inputs=[image_selector, model_selector],
|
1505 |
+
outputs=neuron_plot,
|
1506 |
+
)
|
1507 |
+
image_display.select(
|
1508 |
+
fn=plot_activation_distribution,
|
1509 |
+
inputs=[image_selector, model_selector],
|
1510 |
+
outputs=neuron_plot,
|
1511 |
+
)
|
1512 |
+
model_selector.change(
|
1513 |
+
fn=load_image, inputs=[image_selector], outputs=image_display
|
1514 |
+
)
|
1515 |
+
model_selector.change(
|
1516 |
+
fn=plot_activation_distribution,
|
1517 |
+
inputs=[image_selector, model_selector],
|
1518 |
+
outputs=neuron_plot,
|
1519 |
+
)
|
1520 |
+
|
1521 |
+
with gr.Row():
|
1522 |
+
with gr.Column():
|
1523 |
+
radio_names = get_init_radio_options(default_image_name, model_options[0])
|
1524 |
+
|
1525 |
+
feautre_idx = radio_names[0].split("-")[-1]
|
1526 |
+
markdown_display = gr.Markdown(
|
1527 |
+
f"## Segmentation mask for the selected SAE latent - {feautre_idx}"
|
1528 |
+
)
|
1529 |
+
init_seg, init_tops, init_values = show_activation_heatmap(
|
1530 |
+
default_image_name, radio_names[0], "CLIP"
|
1531 |
+
)
|
1532 |
+
|
1533 |
+
gr.Markdown("### Localize SAE latent activation using CLIP")
|
1534 |
+
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
|
1535 |
+
init_seg_maple, _, _ = show_activation_heatmap(
|
1536 |
+
default_image_name, radio_names[0], model_options[0]
|
1537 |
+
)
|
1538 |
+
gr.Markdown("### Localize SAE latent activation using MaPLE")
|
1539 |
+
seg_mask_display_maple = gr.Image(
|
1540 |
+
value=init_seg_maple, type="pil", show_label=False
|
1541 |
+
)
|
1542 |
+
|
1543 |
+
with gr.Column():
|
1544 |
+
gr.Markdown("## Top activating SAE latent index")
|
1545 |
+
|
1546 |
+
radio_choices = gr.Radio(
|
1547 |
+
choices=radio_names,
|
1548 |
+
label="Top activating SAE latent",
|
1549 |
+
interactive=True,
|
1550 |
+
value=radio_names[0],
|
1551 |
+
)
|
1552 |
+
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
|
1553 |
+
|
1554 |
+
markdown_display_2 = gr.Markdown(
|
1555 |
+
f"## Top reference images for the selected SAE latent - {feautre_idx}"
|
1556 |
+
)
|
1557 |
+
|
1558 |
+
gr.Markdown("### ImageNet")
|
1559 |
+
top_image_1 = gr.Image(
|
1560 |
+
value=init_tops[0], type="pil", label="ImageNet", show_label=False
|
1561 |
+
)
|
1562 |
+
act_value_1 = gr.Markdown(init_values[0])
|
1563 |
+
|
1564 |
+
gr.Markdown("### ImageNet-Sketch")
|
1565 |
+
top_image_2 = gr.Image(
|
1566 |
+
value=init_tops[1],
|
1567 |
+
type="pil",
|
1568 |
+
label="ImageNet-Sketch",
|
1569 |
+
show_label=False,
|
1570 |
+
)
|
1571 |
+
act_value_2 = gr.Markdown(init_values[1])
|
1572 |
+
|
1573 |
+
gr.Markdown("### Caltech101")
|
1574 |
+
top_image_3 = gr.Image(
|
1575 |
+
value=init_tops[2], type="pil", label="Caltech101", show_label=False
|
1576 |
+
)
|
1577 |
+
act_value_3 = gr.Markdown(init_values[2])
|
1578 |
+
|
1579 |
+
image_display.select(
|
1580 |
+
fn=update_radio_options,
|
1581 |
+
inputs=[image_selector, model_selector],
|
1582 |
+
outputs=[radio_choices],
|
1583 |
+
)
|
1584 |
+
|
1585 |
+
model_selector.change(
|
1586 |
+
fn=update_radio_options,
|
1587 |
+
inputs=[image_selector, model_selector],
|
1588 |
+
outputs=[radio_choices],
|
1589 |
+
)
|
1590 |
+
|
1591 |
+
image_selector.select(
|
1592 |
+
fn=update_radio_options,
|
1593 |
+
inputs=[image_selector, model_selector],
|
1594 |
+
outputs=[radio_choices],
|
1595 |
+
)
|
1596 |
+
|
1597 |
+
radio_choices.change(
|
1598 |
+
fn=update_all,
|
1599 |
+
inputs=[image_selector, radio_choices, toggle_btn, model_selector],
|
1600 |
+
outputs=[
|
1601 |
+
seg_mask_display,
|
1602 |
+
seg_mask_display_maple,
|
1603 |
+
top_image_1,
|
1604 |
+
top_image_2,
|
1605 |
+
top_image_3,
|
1606 |
+
act_value_1,
|
1607 |
+
act_value_2,
|
1608 |
+
act_value_3,
|
1609 |
+
markdown_display,
|
1610 |
+
markdown_display_2,
|
1611 |
+
],
|
1612 |
+
)
|
1613 |
+
|
1614 |
+
toggle_btn.change(
|
1615 |
+
fn=show_activation_heatmap_clip,
|
1616 |
+
inputs=[image_selector, radio_choices, toggle_btn],
|
1617 |
+
outputs=[
|
1618 |
+
seg_mask_display,
|
1619 |
+
top_image_1,
|
1620 |
+
top_image_2,
|
1621 |
+
top_image_3,
|
1622 |
+
act_value_1,
|
1623 |
+
act_value_2,
|
1624 |
+
act_value_3,
|
1625 |
+
],
|
1626 |
+
)
|
1627 |
+
|
1628 |
+
# Launch the app
|
1629 |
+
# demo.queue()
|
1630 |
+
# demo.launch()
|
1631 |
+
|
1632 |
+
|
1633 |
+
# if __name__ == "__main__":
|
1634 |
+
# demo.queue() # Enable queuing for better handling of concurrent users
|
1635 |
+
# demo.launch(
|
1636 |
+
# server_name="0.0.0.0", # Allow external access
|
1637 |
+
# server_port=7860,
|
1638 |
+
# share=False, # Set to True if you want to create a public URL
|
1639 |
+
# show_error=True,
|
1640 |
+
# # Optimize concurrency
|
1641 |
+
# max_threads=8, # Adjust based on your CPU cores
|
1642 |
+
# )
|
1643 |
+
|
1644 |
+
if __name__ == "__main__":
|
1645 |
+
import psutil
|
1646 |
+
|
1647 |
+
# Get system memory info
|
1648 |
+
mem = psutil.virtual_memory()
|
1649 |
+
total_ram_gb = mem.total / (1024**3)
|
1650 |
+
|
1651 |
+
# Configure cache sizes based on available RAM
|
1652 |
+
cache_size = int(total_ram_gb * 100) # Rough estimate: 100 entries per GB
|
1653 |
+
|
1654 |
+
# Memory monitoring function
|
1655 |
+
def monitor_memory_usage():
|
1656 |
+
"""Monitor and log memory usage"""
|
1657 |
+
process = psutil.Process()
|
1658 |
+
mem_info = process.memory_info()
|
1659 |
+
print(f"""
|
1660 |
+
Memory Usage:
|
1661 |
+
- RSS: {mem_info.rss / (1024**2):.2f} MB
|
1662 |
+
- VMS: {mem_info.vms / (1024**2):.2f} MB
|
1663 |
+
- Cache Size: {len(_CACHE['model_data'])} entries
|
1664 |
+
""")
|
1665 |
+
|
1666 |
+
# Start periodic monitoring
|
1667 |
+
def start_memory_monitor():
|
1668 |
+
threading.Timer(300.0, start_memory_monitor).start() # Every 5 minutes
|
1669 |
+
monitor_memory_usage()
|
1670 |
+
|
1671 |
+
# Start the monitoring
|
1672 |
+
import threading
|
1673 |
+
start_memory_monitor()
|
1674 |
+
|
1675 |
+
# Launch the app with memory-optimized settings
|
1676 |
+
demo.queue(max_size=min(20, int(total_ram_gb))) # Scale queue with RAM
|
1677 |
+
demo.launch(
|
1678 |
+
server_name="0.0.0.0",
|
1679 |
+
server_port=7860,
|
1680 |
+
share=False,
|
1681 |
+
show_error=True,
|
1682 |
+
max_threads=min(16, psutil.cpu_count()), # Scale threads with CPU
|
1683 |
+
websocket_ping_timeout=60,
|
1684 |
+
preventive_refresh=True,
|
1685 |
+
memory_limit_mb=int(total_ram_gb * 1024 * 0.8) # Use up to 80% of RAM
|
1686 |
+
)
|