skin-lesion / app.py
e-colombo's picture
New app.py
4f7b9da
raw
history blame
1.85 kB
import torch
import gradio as gr
from PIL import Image
from src.model import get_model, apply_weights, copy_weight
from src.transform import crop, pad, gpu_crop
from torchvision.transforms import Normalize, ToTensor
from pathlib import Path
vocab = [
"Actinic Keratosis",
"Basal Cell Carcinoma",
"Benign Keratosis",
"Dermatofibroma",
"Melanoma",
"Melanocytic Nevus",
"Vascular Lesion",
]
model = get_model()
state = torch.load("exported_model.pth", map_location="cpu")
apply_weights(model, state, copy_weight)
to_tensor = ToTensor()
norm = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def classify_image(inp):
inp = Image.fromarray(inp)
transformed_input = pad(crop(inp, (460, 460)), (460, 460))
transformed_input = to_tensor(transformed_input).unsqueeze(0)
transformed_input = gpu_crop(transformed_input, (224, 224))
transformed_input = norm(transformed_input)
model.eval()
with torch.no_grad():
pred = model(transformed_input)
prob = torch.softmax(pred[0], dim=0)
confidences = {vocab[i]: float(prob[i]) for i in range(7)}
return confidences
iface = gr.Interface(
fn=classify_image,
inputs="image",
outputs=gr.Label(),
examples=[
["ISIC_0024634_00.jpg"],
["ISIC_0032932_00.jpg"],
],
title="Skin Lesion Recognition using fast.ai",
description="Adapted from https://domingomery.ing.puc.cl/",
article="<p style='text-align: center'><a href='https://evertoncolombo.github.io/blog/posts/skin-lesion/Skin%20Lesion%20Recognition%20using%20fastai.html'>More info | <a href='https://www.dropbox.com/s/nzrvuoos7sgl5dh/exp4val.zip' >Dataset</a> <center><img src='https://visitor-badge.glitch.me/badge?page_id=e_colombo_skin_lesion' alt='visitor badge'></center></p>",
allow_flagging="never",
).launch()