Spaces:
Sleeping
Sleeping
File size: 7,072 Bytes
1669f2b f00550f 64434a5 f00550f 1669f2b 042d1d5 1669f2b 042d1d5 1669f2b 8ca5d55 042d1d5 1669f2b 85ecabb 042d1d5 85ecabb 042d1d5 f00550f 64434a5 f00550f 85ecabb 64434a5 1669f2b 64434a5 1669f2b 61cae63 64434a5 36dd2e6 64434a5 1669f2b 64434a5 1669f2b 64434a5 85ecabb 64434a5 f00550f 64434a5 1669f2b 64434a5 f00550f 85ecabb 1669f2b 64434a5 1669f2b 64434a5 1669f2b 64434a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
HuggingFaceEndpoint)
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
from tools import (absolute, add, analyze_csv_file, analyze_excel_file,
arvix_search, audio_transcription, compound_interest,
convert_temperature, divide, exponential, extract_text,
factorial, floor_divide, get_current_time_in_timezone,
greatest_common_divisor, is_prime, least_common_multiple,
logarithm, modulus, multiply, percentage_calculator, power,
python_code_parser, roman_calculator_converter, square_root,
subtract, web_search, wiki_search)
# Load Constants
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
tools = [
multiply, add, subtract, power, divide, modulus,
square_root, floor_divide, absolute, logarithm,
exponential, web_search, roman_calculator_converter,
get_current_time_in_timezone, compound_interest,
convert_temperature, factorial, greatest_common_divisor,
is_prime, least_common_multiple, percentage_calculator,
wiki_search, analyze_excel_file, arvix_search,
audio_transcription, python_code_parser, analyze_csv_file,
extract_text
]
# Load system prompt
system_prompt = """
You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don't use comma to write your number neither use units
such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles,
neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be
put in the list is a number or a string.
"""
# System message
sys_msg = SystemMessage(content=system_prompt)
def get_vector_store(persist_directory="chroma_db"):
"""
Initializes and returns a Chroma vector store.
If the database exists, it loads it. If not, it creates it,
adds some initial documents, and persists them.
"""
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
if os.path.exists(persist_directory) and os.listdir(persist_directory):
print("Loading existing vector store...")
vector_store = Chroma(
persist_directory=persist_directory,
embedding_function=embedding_function
)
else:
print("Creating new vector store...")
os.makedirs(persist_directory, exist_ok=True)
# Example documents to add
initial_documents = [
"The Principle of Double Effect is an ethical theory that distinguishes between the intended and foreseen consequences of an action.",
"St. Thomas Aquinas is often associated with the development of the Principle of Double Effect.",
"LangGraph is a library for building stateful, multi-actor applications with LLMs.",
"Chroma is a vector database used for storing and retrieving embeddings."
]
vector_store = Chroma.from_texts(
texts=initial_documents,
embedding=embedding_function,
persist_directory=persist_directory
)
# No need to call persist() when using from_texts with a persist_directory
return vector_store
# --- Initialize Vector Store and Retriever ---
vector_store = get_vector_store()
retriever_component = vector_store.as_retriever(
search_type="mmr", # Use Maximum Marginal Relevance for diverse results
search_kwargs={'k': 2, 'lambda_mult': 0.5} # Retrieve 2 documents
)
def build_graph():
"""Build the graph"""
# First create the HuggingFaceEndpoint
llm_endpoint = HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
#api_key=GEMINI_API_KEY,
temperature=0.3,
max_new_tokens=512,
timeout=60,
)
# Then wrap it with ChatHuggingFace to get chat model functionality
llm = ChatHuggingFace(llm=llm_endpoint)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# --- Nodes ---
def assistant(state: MessagesState):
"""Assistant node"""
# Prepend the system message to the state
messages_with_system_prompt = [sys_msg] + state["messages"]
return {"messages": [llm_with_tools.invoke(messages_with_system_prompt)]}
def retriever_node(state: MessagesState):
"""
Retrieves relevant documents from the vector store based on the latest human message.
"""
last_human_message = state["messages"][-1].content
retrieved_docs = retriever_component.invoke(last_human_message)
if retrieved_docs:
retrieved_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
# Create a ToolMessage to hold the retrieved context
context_message = ToolMessage(
content=f"Retrieved context from vector store:\n\n{retrieved_context}",
tool_call_id="retriever" # A descriptive ID
)
return {"messages": [context_message]}
return {"messages": []}
# --- Graph Definition ---
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever_node)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph()
# Run the graph
messages = [HumanMessage(content=question)]
# The initial state for the graph
initial_state = {"messages": messages}
# Invoke the graph stream to see the steps
for s in graph.stream(initial_state, stream_mode="values"):
message = s["messages"][-1]
if isinstance(message, ToolMessage):
print("---RETRIEVED CONTEXT---")
print(message.content)
print("-----------------------")
else:
message.pretty_print()
|