Spaces:
Sleeping
Sleeping
File size: 4,996 Bytes
1669f2b f00550f 1669f2b f00550f 1669f2b 8ca5d55 1669f2b 85ecabb 1669f2b 8ca5d55 1669f2b 8ca5d55 85ecabb 1669f2b 85ecabb f00550f 85ecabb 1669f2b 294f2c0 1669f2b 85ecabb 1669f2b f00550f 85ecabb f00550f 1669f2b f00550f 85ecabb 1669f2b f00550f 1669f2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
HuggingFaceEndpoint)
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
from tools import (absolute, add, analyze_excel_file, arvix_search,
audio_transcription, compound_interest, convert_temperature,
divide, exponential, factorial, floor_divide,
get_current_time_in_timezone, greatest_common_divisor,
is_prime, least_common_multiple, logarithm, modulus,
multiply, percentage_calculator, power, python_code_parser,
roman_calculator_converter, square_root, subtract,
web_search, wiki_search)
# Load Constants
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
tools = [
multiply, add, subtract, power, divide, modulus,
square_root, floor_divide, absolute, logarithm,
exponential, web_search, roman_calculator_converter,
get_current_time_in_timezone, compound_interest,
convert_temperature, factorial, greatest_common_divisor,
is_prime, least_common_multiple, percentage_calculator,
wiki_search, analyze_excel_file, arvix_search, audio_transcription, python_code_parser
]
# Load system prompt
system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
"""
# System message
sys_msg = SystemMessage(content=system_prompt)
# Embeddings + Chroma Vector Store
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vector_store = Chroma(
collection_name="langgraph-documents",
embedding_function=embeddings,
persist_directory="chroma_db" # Use a persistent directory
)
def build_graph():
"""Build the graph"""
# First create the HuggingFaceEndpoint
llm_endpoint = HuggingFaceEndpoint(
# repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
repo_id="mistralai/Mistral-7B-Instruct-v0.2",
# Other models to try:
# "meta-llama/Llama-2-7b-chat-hf"
# "google/gemma-7b-it"
# "mosaicml/mpt-7b-instruct"
# "tiiuae/falcon-7b-instruct"
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
temperature=0.1, # Lower temperature for more consistent responses
max_new_tokens=1024,
timeout=30,
)
# Then wrap it with ChatHuggingFace to get chat model functionality
llm = ChatHuggingFace(llm=llm_endpoint)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke([system_prompt] + state["messages"])]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
if similar:
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph()
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print() |