EtienneB
Update agent.py
c4e5a43
raw
history blame
7.87 kB
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
HuggingFaceEndpoint)
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
from tools import (absolute, add, analyze_csv_file, analyze_excel_file,
arvix_search, audio_transcription, compound_interest,
convert_temperature, divide, exponential,
extract_text_from_image, factorial, floor_divide,
get_current_time_in_timezone,
get_max_bird_species_count_from_video,
greatest_common_divisor, is_prime, least_common_multiple,
logarithm, modulus, multiply, percentage_calculator, power,
python_code_parser, reverse_sentence,
roman_calculator_converter, square_root, subtract,
web_content_extract, web_search, wiki_search)
# Load Constants
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
tools = [
multiply, add, subtract, power, divide, modulus,
square_root, floor_divide, absolute, logarithm,
exponential, web_search, roman_calculator_converter,
get_current_time_in_timezone, compound_interest,
convert_temperature, factorial, greatest_common_divisor,
is_prime, least_common_multiple, percentage_calculator,
wiki_search, analyze_excel_file, arvix_search,
audio_transcription, python_code_parser, analyze_csv_file,
extract_text_from_image, reverse_sentence, web_content_extract,
get_max_bird_species_count_from_video
]
# Load system prompt
system_prompt = """
You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with only the answer, no extra text, no prefix, and no explanation.
Your answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don't use a comma to write your number, nor use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending on whether the element to be put in the list is a number or a string.
Format your output as: Answers (answers): [{"task_id": ..., "submitted_answer": ...}]
"""
# System message
sys_msg = SystemMessage(content=system_prompt)
def get_vector_store(persist_directory="chroma_db"):
"""
Initializes and returns a Chroma vector store.
If the database exists, it loads it. If not, it creates it,
adds some initial documents, and persists them.
"""
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
if os.path.exists(persist_directory) and os.listdir(persist_directory):
print("Loading existing vector store...")
vector_store = Chroma(
persist_directory=persist_directory,
embedding_function=embedding_function
)
else:
print("Creating new vector store...")
os.makedirs(persist_directory, exist_ok=True)
# Example documents to add
initial_documents = [
"The Principle of Double Effect is an ethical theory that distinguishes between the intended and foreseen consequences of an action.",
"St. Thomas Aquinas is often associated with the development of the Principle of Double Effect.",
"LangGraph is a library for building stateful, multi-actor applications with LLMs.",
"Chroma is a vector database used for storing and retrieving embeddings."
]
vector_store = Chroma.from_texts(
texts=initial_documents,
embedding=embedding_function,
persist_directory=persist_directory
)
# No need to call persist() when using from_texts with a persist_directory
return vector_store
# --- Initialize Vector Store and Retriever ---
vector_store = get_vector_store()
retriever_component = vector_store.as_retriever(
search_type="mmr", # Use Maximum Marginal Relevance for diverse results
search_kwargs={'k': 2, 'lambda_mult': 0.5} # Retrieve 2 documents
)
def build_graph():
"""Build the graph"""
# First create the HuggingFaceEndpoint
llm_endpoint = HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
#api_key=GEMINI_API_KEY,
temperature=0.1,
max_new_tokens=4096,
timeout=60,
)
# Then wrap it with ChatHuggingFace to get chat model functionality
llm = ChatHuggingFace(llm=llm_endpoint)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# --- Nodes ---
def assistant(state: MessagesState):
"""Assistant node"""
messages_with_system_prompt = [sys_msg] + state["messages"]
llm_response = llm_with_tools.invoke(messages_with_system_prompt)
# Extract the answer text (strip any "FINAL ANSWER:" if present)
answer_text = llm_response.content
if answer_text.strip().lower().startswith("final answer:"):
answer_text = answer_text.split(":", 1)[1].strip()
# Get task_id from state or set a placeholder
task_id = state.get("task_id", "1") # Replace with actual logic if needed
formatted = f'Answers (answers): [{{"task_id": "{task_id}", "submitted_answer": "{answer_text}"}}]'
return {"messages": [formatted]}
def retriever_node(state: MessagesState):
"""
Retrieves relevant documents from the vector store based on the latest human message.
"""
last_human_message = state["messages"][-1].content
retrieved_docs = retriever_component.invoke(last_human_message)
if retrieved_docs:
retrieved_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
# Create a ToolMessage to hold the retrieved context
context_message = ToolMessage(
content=f"Retrieved context from vector store:\n\n{retrieved_context}",
tool_call_id="retriever" # A descriptive ID
)
return {"messages": [context_message]}
return {"messages": []}
# --- Graph Definition ---
builder = StateGraph(MessagesState)
# builder.add_node("retriever", retriever_node)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
# builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph()
# Run the graph
messages = [HumanMessage(content=question)]
# The initial state for the graph
initial_state = {"messages": messages}
# Invoke the graph stream to see the steps
for s in graph.stream(initial_state, stream_mode="values"):
message = s["messages"][-1]
if isinstance(message, ToolMessage):
print("---RETRIEVED CONTEXT---")
print(message.content)
print("-----------------------")
else:
message.pretty_print()