EtienneB
major overhaul
5da0168
import asyncio
import inspect
import json
import os
import time
from typing import Any, Dict, List, Optional
import gradio as gr
import pandas as pd
import requests
from dotenv import load_dotenv
from langchain_community.chat_models import ChatHuggingFace
from langchain_community.llms import HuggingFaceEndpoint
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.tools import StructuredTool
from tools import (absolute, add, divide, exponential, floor_divide,
get_current_time_in_timezone, logarithm, modulus, multiply,
power, roman_calculator_converter, square_root, subtract,
web_search)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_AGENT_ITERATIONS = 15
MAX_CONCURRENT_REQUESTS = 5 # Limit concurrent requests to avoid overwhelming the API
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_TOKEN")
# Quick test to see if tokens are available.
print(f"Available env vars: {[k for k in os.environ.keys() if 'TOKEN' in k or 'HF' in k]}")
# Global cache for answers
answer_cache = {}
class ImprovedAgent:
def __init__(self):
if not HUGGINGFACEHUB_API_TOKEN:
raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
print("ImprovedAgent initialized.")
# Initialize LLM with better parameters
self.llm = HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
temperature=0.1, # Lower temperature for more consistent responses
max_new_tokens=1024,
timeout=30,
)
self.chat = ChatHuggingFace(llm=self.llm, verbose=False)
# Initialize tools
self.tools = [
multiply, add, subtract, power, divide, modulus,
square_root, floor_divide, absolute, logarithm,
exponential, web_search, roman_calculator_converter,
get_current_time_in_timezone
]
self.chat_with_tools = self.chat.bind_tools(self.tools)
print(f"Total tools available: {len(self.tools)}")
# Create tool mapping for easier access
self.tool_map = {tool.name: tool for tool in self.tools}
def _extract_tool_calls(self, response) -> List[Dict]:
"""Extract tool calls from the response"""
tool_calls = []
if hasattr(response, 'tool_calls') and response.tool_calls:
for tool_call in response.tool_calls:
tool_calls.append({
'name': tool_call['name'],
'args': tool_call['args']
})
return tool_calls
def _execute_tool_calls(self, tool_calls: List[Dict]) -> List[str]:
"""Execute tool calls and return results"""
results = []
for tool_call in tool_calls:
tool_name = tool_call['name']
tool_args = tool_call['args']
if tool_name in self.tool_map:
try:
tool = self.tool_map[tool_name]
result = tool.invoke(tool_args)
results.append(f"Tool {tool_name} result: {result}")
except Exception as e:
results.append(f"Tool {tool_name} error: {str(e)}")
else:
results.append(f"Unknown tool: {tool_name}")
return results
async def answer(self, question: str) -> str:
"""Improved answer method with better error handling and tool usage"""
print(f"Processing question: {question[:100]}...")
try:
# Create system prompt for better instruction following
system_prompt = """You are a helpful AI assistant with access to various tools.
When answering questions, use the appropriate tools when needed and provide clear, concise answers.
If you need to perform calculations, use the math tools available.
If you need current information, use the web search tool.
Always provide a final answer after using tools."""
messages = [
HumanMessage(content=f"{system_prompt}\n\nQuestion: {question}")
]
# Initial response
response = await asyncio.to_thread(self.chat_with_tools.invoke, messages)
# Handle tool calls if present
max_iterations = 3
iteration = 0
while iteration < max_iterations:
tool_calls = self._extract_tool_calls(response)
if not tool_calls:
break
# Execute tool calls
tool_results = self._execute_tool_calls(tool_calls)
# Add tool results to conversation
messages.append(AIMessage(content=response.content))
messages.append(HumanMessage(content=f"Tool results: {'; '.join(tool_results)}. Please provide a final answer based on these results."))
# Get next response
response = await asyncio.to_thread(self.chat_with_tools.invoke, messages)
iteration += 1
# Extract final answer
final_answer = response.content.strip()
# Clean up the response - remove any tool call artifacts
if "Tool " in final_answer and "result:" in final_answer:
# Try to extract just the final answer part
lines = final_answer.split('\n')
for line in reversed(lines):
if line.strip() and not line.startswith('Tool ') and not 'result:' in line:
final_answer = line.strip()
break
return final_answer
except Exception as e:
print(f"Error in answer method: {e}")
return f"Error processing question: {str(e)}"
def answer_sync(self, question: str) -> str:
"""Synchronous version of answer method"""
try:
return asyncio.run(self.answer(question))
except Exception as e:
print(f"Error in sync answer: {e}")
return f"Error: {str(e)}"
async def process_questions_batch(agent, questions_batch, semaphore):
"""Process a batch of questions with rate limiting"""
results = []
async def process_single_question(task_id, question):
async with semaphore:
try:
# Check cache first
cache_key = f"{task_id}_{hash(question)}"
if cache_key in answer_cache:
print(f"Using cached answer for task {task_id}")
return task_id, question, answer_cache[cache_key], None
answer = await agent.answer(question)
# Cache the result
answer_cache[cache_key] = answer
return task_id, question, answer, None
except Exception as e:
print(f"Error processing task {task_id}: {e}")
return task_id, question, None, str(e)
# Create semaphore for rate limiting
tasks = []
for item in questions_batch:
task_id = item.get("task_id")
question_text = item.get("question")
if task_id and question_text is not None:
tasks.append(process_single_question(task_id, question_text))
if tasks:
results = await asyncio.gather(*tasks, return_exceptions=True)
return results
async def run_agent_async_improved(agent, questions_data):
"""Improved async processing with batching and caching"""
results_log, answers_payload = [], []
# Create semaphore for rate limiting
semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
# Process questions in batches
batch_size = 10
batches = [questions_data[i:i + batch_size] for i in range(0, len(questions_data), batch_size)]
print(f"Processing {len(questions_data)} questions in {len(batches)} batches...")
for i, batch in enumerate(batches):
print(f"Processing batch {i+1}/{len(batches)} ({len(batch)} questions)...")
try:
batch_results = await process_questions_batch(agent, batch, semaphore)
for result in batch_results:
if isinstance(result, Exception):
print(f"Batch processing error: {result}")
continue
task_id, question, answer, error = result
if error:
print(f"Error in task {task_id}: {error}")
results_log.append({
"Task ID": task_id,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Submitted Answer": f"ERROR: {error}"
})
else:
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer
})
# Small delay between batches to be respectful
if i < len(batches) - 1:
await asyncio.sleep(1)
except Exception as e:
print(f"Error processing batch {i+1}: {e}")
# Continue with next batch
continue
return results_log, answers_payload
def cache_answers(profile: gr.OAuthProfile | None):
"""Cache answers without submitting"""
if not profile:
return "Please log in to Hugging Face first.", None
username = profile.username
print(f"Caching answers for user: {username}")
# Fetch questions
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "No questions found.", None
print(f"Fetched {len(questions_data)} questions for caching.")
# Initialize agent
try:
agent = ImprovedAgent()
except Exception as e:
print(f"Full error details: {e}")
return f"Error initializing agent: {e}", None
# Process questions
results_log, answers_payload = asyncio.run(run_agent_async_improved(agent, questions_data))
# Store in global cache with username
answer_cache[f"user_{username}"] = answers_payload
status = f"Cached {len(answers_payload)} answers for user {username}. Ready to submit!"
results_df = pd.DataFrame(results_log)
return status, results_df
except Exception as e:
print(f"Error caching answers: {e}")
return f"Error caching answers: {e}", None
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""Submit previously cached answers"""
if not profile:
return "Please log in to Hugging Face first.", None
username = profile.username
cache_key = f"user_{username}"
if cache_key not in answer_cache:
return "No cached answers found. Please run 'Cache Answers' first.", None
answers_payload = answer_cache[cache_key]
if not answers_payload:
return "No answers to submit.", None
# Get space info
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
# Submit
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
print(f"Submitting {len(answers_payload)} cached answers...")
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Clear cache after successful submission
if cache_key in answer_cache:
del answer_cache[cache_key]
return final_status, None
except Exception as e:
print(f"Submission error: {e}")
return f"Submission failed: {e}", None
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
# Using the retry function instead of direct request
response = make_request_with_retry(questions_url)
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
# Using the retry function for submission as well
response = make_request_with_retry(submit_url, method="post", json_data=submission_data, timeout=60)
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)