Spaces:
Sleeping
Sleeping
EtienneB
commited on
Commit
Β·
374dd02
1
Parent(s):
b565efa
trying adjusted agent.
Browse files- agent copy.py +174 -0
- agent.py +75 -55
agent copy.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
from langchain_core.messages import (AIMessage, HumanMessage, SystemMessage,
|
| 8 |
+
ToolMessage)
|
| 9 |
+
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
|
| 10 |
+
HuggingFaceEndpoint)
|
| 11 |
+
from langgraph.graph import START, MessagesState, StateGraph
|
| 12 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 13 |
+
|
| 14 |
+
from tools import (absolute, add, analyze_csv_file, analyze_excel_file,
|
| 15 |
+
arvix_search, audio_transcription, compound_interest,
|
| 16 |
+
convert_temperature, divide, exponential,
|
| 17 |
+
extract_text_from_image, factorial, floor_divide,
|
| 18 |
+
get_current_time_in_timezone, greatest_common_divisor,
|
| 19 |
+
is_prime, least_common_multiple, logarithm, modulus,
|
| 20 |
+
multiply, percentage_calculator, power, python_code_parser,
|
| 21 |
+
reverse_sentence, roman_calculator_converter, square_root,
|
| 22 |
+
subtract, web_content_extract, web_search, wiki_search)
|
| 23 |
+
|
| 24 |
+
# Load Constants
|
| 25 |
+
load_dotenv()
|
| 26 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 27 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
| 28 |
+
|
| 29 |
+
tools = [
|
| 30 |
+
multiply, add, subtract, power, divide, modulus,
|
| 31 |
+
square_root, floor_divide, absolute, logarithm,
|
| 32 |
+
exponential, web_search, roman_calculator_converter,
|
| 33 |
+
get_current_time_in_timezone, compound_interest,
|
| 34 |
+
convert_temperature, factorial, greatest_common_divisor,
|
| 35 |
+
is_prime, least_common_multiple, percentage_calculator,
|
| 36 |
+
wiki_search, analyze_excel_file, arvix_search,
|
| 37 |
+
audio_transcription, python_code_parser, analyze_csv_file,
|
| 38 |
+
extract_text_from_image, reverse_sentence, web_content_extract,
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
# Load system prompt
|
| 42 |
+
system_prompt = """
|
| 43 |
+
You are a general AI assistant. I will ask you a question.
|
| 44 |
+
Report your thoughts, and finish your answer with only the answer, no extra text, no prefix, and no explanation.
|
| 45 |
+
Your answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 46 |
+
If you are asked for a number, don't use a comma to write your number, nor use units such as $ or percent sign unless specified otherwise.
|
| 47 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 48 |
+
If you are asked for a comma separated list, apply the above rules depending on whether the element to be put in the list is a number or a string.
|
| 49 |
+
Format your output as: [{"task_id": ..., "submitted_answer": ...}]
|
| 50 |
+
Do NOT include the format string or any JSON inside the submitted_answer field. Only output a single flat list as: [{"task_id": ..., "submitted_answer": ...}]
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
# System message
|
| 54 |
+
sys_msg = SystemMessage(content=system_prompt)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def build_graph():
|
| 58 |
+
"""Build the graph"""
|
| 59 |
+
# First create the HuggingFaceEndpoint
|
| 60 |
+
llm_endpoint = HuggingFaceEndpoint(
|
| 61 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
| 62 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 63 |
+
#api_key=GEMINI_API_KEY,
|
| 64 |
+
temperature=0.1,
|
| 65 |
+
max_new_tokens=1024,
|
| 66 |
+
timeout=60,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Then wrap it with ChatHuggingFace to get chat model functionality
|
| 70 |
+
llm = ChatHuggingFace(llm=llm_endpoint)
|
| 71 |
+
|
| 72 |
+
# Bind tools to LLM
|
| 73 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 74 |
+
|
| 75 |
+
# --- Nodes ---
|
| 76 |
+
def extract_answer(llm_output):
|
| 77 |
+
# Try to parse as JSON if possible
|
| 78 |
+
try:
|
| 79 |
+
# If the LLM output is a JSON list, extract the answer
|
| 80 |
+
parsed = json.loads(llm_output.strip().split('\n')[0])
|
| 81 |
+
if isinstance(parsed, list) and isinstance(parsed[0], dict) and "submitted_answer" in parsed[0]:
|
| 82 |
+
return parsed[0]["submitted_answer"]
|
| 83 |
+
except Exception:
|
| 84 |
+
pass
|
| 85 |
+
# Otherwise, just return the first line (before any explanation)
|
| 86 |
+
return llm_output.strip().split('\n')[0]
|
| 87 |
+
|
| 88 |
+
def assistant(state: MessagesState):
|
| 89 |
+
messages_with_system_prompt = [sys_msg] + state["messages"]
|
| 90 |
+
llm_response = llm_with_tools.invoke(messages_with_system_prompt)
|
| 91 |
+
answer_text = extract_answer(llm_response.content)
|
| 92 |
+
task_id = str(state.get("task_id", "1")) # Ensure task_id is a string
|
| 93 |
+
formatted = [{"task_id": task_id, "submitted_answer": answer_text}]
|
| 94 |
+
return {"messages": [AIMessage(content=json.dumps(formatted, ensure_ascii=False))]}
|
| 95 |
+
|
| 96 |
+
# --- Graph Definition ---
|
| 97 |
+
builder = StateGraph(MessagesState)
|
| 98 |
+
builder.add_node("assistant", assistant)
|
| 99 |
+
builder.add_node("tools", ToolNode(tools))
|
| 100 |
+
|
| 101 |
+
builder.add_edge(START, "assistant")
|
| 102 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
| 103 |
+
builder.add_edge("tools", "assistant")
|
| 104 |
+
|
| 105 |
+
# Compile graph
|
| 106 |
+
return builder.compile()
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def is_valid_agent_output(output):
|
| 110 |
+
"""
|
| 111 |
+
Checks if the output matches the required format:
|
| 112 |
+
Answers (answers): [{"task_id": ..., "submitted_answer": ...}]
|
| 113 |
+
"""
|
| 114 |
+
# Basic regex to check the format
|
| 115 |
+
pattern = r'^Answers \(answers\): \[(\{.*\})\]$'
|
| 116 |
+
match = re.match(pattern, output.strip())
|
| 117 |
+
if not match:
|
| 118 |
+
return False
|
| 119 |
+
|
| 120 |
+
# Try to parse the JSON part
|
| 121 |
+
try:
|
| 122 |
+
answers_list = json.loads(f'[{match.group(1)}]')
|
| 123 |
+
# Check required keys
|
| 124 |
+
for ans in answers_list:
|
| 125 |
+
if not isinstance(ans, dict):
|
| 126 |
+
return False
|
| 127 |
+
if "task_id" not in ans or "submitted_answer" not in ans:
|
| 128 |
+
return False
|
| 129 |
+
return True
|
| 130 |
+
except Exception:
|
| 131 |
+
return False
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def extract_flat_answer(output):
|
| 135 |
+
# Try to find the innermost Answers (answers): [{...}]
|
| 136 |
+
pattern = r'Answers \(answers\): \[(\{.*?\})\]'
|
| 137 |
+
matches = re.findall(pattern, output)
|
| 138 |
+
if matches:
|
| 139 |
+
# Use the last match (innermost)
|
| 140 |
+
try:
|
| 141 |
+
answers_list = json.loads(f'[{matches[-1]}]')
|
| 142 |
+
if isinstance(answers_list, list) and "task_id" in answers_list[0] and "submitted_answer" in answers_list[0]:
|
| 143 |
+
return f'Answers (answers): [{matches[-1]}]'
|
| 144 |
+
except Exception:
|
| 145 |
+
pass
|
| 146 |
+
return output # fallback
|
| 147 |
+
|
| 148 |
+
# test
|
| 149 |
+
if __name__ == "__main__":
|
| 150 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
| 151 |
+
# Build the graph
|
| 152 |
+
graph = build_graph()
|
| 153 |
+
# Run the graph
|
| 154 |
+
messages = [HumanMessage(content=question)]
|
| 155 |
+
# The initial state for the graph
|
| 156 |
+
initial_state = {"messages": messages, "task_id": "test123"}
|
| 157 |
+
|
| 158 |
+
# Invoke the graph stream to see the steps
|
| 159 |
+
for s in graph.stream(initial_state, stream_mode="values"):
|
| 160 |
+
message = s["messages"][-1]
|
| 161 |
+
if isinstance(message, ToolMessage):
|
| 162 |
+
print("---RETRIEVED CONTEXT---")
|
| 163 |
+
print(message.content)
|
| 164 |
+
print("-----------------------")
|
| 165 |
+
else:
|
| 166 |
+
output = message.content # This is a string
|
| 167 |
+
try:
|
| 168 |
+
parsed = json.loads(output)
|
| 169 |
+
if isinstance(parsed, list) and "task_id" in parsed[0] and "submitted_answer" in parsed[0]:
|
| 170 |
+
print("β
Output is in the correct format!")
|
| 171 |
+
else:
|
| 172 |
+
print("β Output is NOT in the correct format!")
|
| 173 |
+
except Exception as e:
|
| 174 |
+
print("β Output is NOT in the correct format!", e)
|
agent.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
|
@@ -38,16 +37,19 @@ tools = [
|
|
| 38 |
extract_text_from_image, reverse_sentence, web_content_extract,
|
| 39 |
]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
system_prompt = """
|
| 43 |
-
You are a
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
"""
|
| 52 |
|
| 53 |
# System message
|
|
@@ -60,7 +62,6 @@ def build_graph():
|
|
| 60 |
llm_endpoint = HuggingFaceEndpoint(
|
| 61 |
repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
| 62 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 63 |
-
#api_key=GEMINI_API_KEY,
|
| 64 |
temperature=0.1,
|
| 65 |
max_new_tokens=1024,
|
| 66 |
timeout=60,
|
|
@@ -72,26 +73,44 @@ def build_graph():
|
|
| 72 |
# Bind tools to LLM
|
| 73 |
llm_with_tools = llm.bind_tools(tools)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
def assistant(state: MessagesState):
|
| 89 |
messages_with_system_prompt = [sys_msg] + state["messages"]
|
| 90 |
llm_response = llm_with_tools.invoke(messages_with_system_prompt)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# --- Graph Definition ---
|
| 97 |
builder = StateGraph(MessagesState)
|
|
@@ -109,45 +128,42 @@ def build_graph():
|
|
| 109 |
def is_valid_agent_output(output):
|
| 110 |
"""
|
| 111 |
Checks if the output matches the required format:
|
| 112 |
-
|
| 113 |
"""
|
| 114 |
-
# Basic regex to check the format
|
| 115 |
-
pattern = r'^Answers \(answers\): \[(\{.*\})\]$'
|
| 116 |
-
match = re.match(pattern, output.strip())
|
| 117 |
-
if not match:
|
| 118 |
-
return False
|
| 119 |
-
|
| 120 |
-
# Try to parse the JSON part
|
| 121 |
try:
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
| 126 |
return False
|
| 127 |
-
if "task_id" not in
|
| 128 |
return False
|
| 129 |
return True
|
| 130 |
-
except
|
| 131 |
return False
|
| 132 |
|
| 133 |
|
| 134 |
def extract_flat_answer(output):
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
return
|
|
|
|
|
|
|
| 147 |
|
| 148 |
# test
|
| 149 |
if __name__ == "__main__":
|
| 150 |
-
question = "
|
| 151 |
# Build the graph
|
| 152 |
graph = build_graph()
|
| 153 |
# Run the graph
|
|
@@ -164,11 +180,15 @@ if __name__ == "__main__":
|
|
| 164 |
print("-----------------------")
|
| 165 |
else:
|
| 166 |
output = message.content # This is a string
|
|
|
|
| 167 |
try:
|
| 168 |
parsed = json.loads(output)
|
| 169 |
if isinstance(parsed, list) and "task_id" in parsed[0] and "submitted_answer" in parsed[0]:
|
| 170 |
print("β
Output is in the correct format!")
|
|
|
|
|
|
|
| 171 |
else:
|
| 172 |
print("β Output is NOT in the correct format!")
|
| 173 |
except Exception as e:
|
| 174 |
-
print("β Output is NOT in the correct format!", e)
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
import re
|
|
|
|
| 37 |
extract_text_from_image, reverse_sentence, web_content_extract,
|
| 38 |
]
|
| 39 |
|
| 40 |
+
# Updated system prompt for cleaner output
|
| 41 |
system_prompt = """
|
| 42 |
+
You are a helpful AI assistant. When asked a question, think through it step by step and provide only the final answer.
|
| 43 |
+
|
| 44 |
+
CRITICAL INSTRUCTIONS:
|
| 45 |
+
- Use available tools when needed to gather information or perform calculations
|
| 46 |
+
- After using tools and analyzing the information, provide ONLY the final answer
|
| 47 |
+
- Do not include explanations, reasoning, or extra text in your final response
|
| 48 |
+
- If the answer is a number, provide just the number (no units unless specifically requested)
|
| 49 |
+
- If the answer is text, provide just the essential text (no articles or extra words unless necessary)
|
| 50 |
+
- If the answer is a list, provide it as comma-separated values
|
| 51 |
+
|
| 52 |
+
Your response should contain ONLY the answer - nothing else.
|
| 53 |
"""
|
| 54 |
|
| 55 |
# System message
|
|
|
|
| 62 |
llm_endpoint = HuggingFaceEndpoint(
|
| 63 |
repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
| 64 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
|
|
|
| 65 |
temperature=0.1,
|
| 66 |
max_new_tokens=1024,
|
| 67 |
timeout=60,
|
|
|
|
| 73 |
# Bind tools to LLM
|
| 74 |
llm_with_tools = llm.bind_tools(tools)
|
| 75 |
|
| 76 |
+
def clean_answer(text):
|
| 77 |
+
"""Extract clean answer from LLM response"""
|
| 78 |
+
if not text:
|
| 79 |
+
return ""
|
| 80 |
+
|
| 81 |
+
# Remove common prefixes and suffixes
|
| 82 |
+
text = text.strip()
|
| 83 |
+
|
| 84 |
+
# Remove common response patterns
|
| 85 |
+
patterns_to_remove = [
|
| 86 |
+
r'^(The answer is:?\s*)',
|
| 87 |
+
r'^(Answer:?\s*)',
|
| 88 |
+
r'^(Final answer:?\s*)',
|
| 89 |
+
r'^(Result:?\s*)',
|
| 90 |
+
r'(\s*is the answer\.?)$',
|
| 91 |
+
r'(\s*\.)$'
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
for pattern in patterns_to_remove:
|
| 95 |
+
text = re.sub(pattern, '', text, flags=re.IGNORECASE)
|
| 96 |
+
|
| 97 |
+
# Take only the first line if multiple lines
|
| 98 |
+
first_line = text.split('\n')[0].strip()
|
| 99 |
+
|
| 100 |
+
return first_line
|
| 101 |
|
| 102 |
def assistant(state: MessagesState):
|
| 103 |
messages_with_system_prompt = [sys_msg] + state["messages"]
|
| 104 |
llm_response = llm_with_tools.invoke(messages_with_system_prompt)
|
| 105 |
+
|
| 106 |
+
# Clean the answer
|
| 107 |
+
clean_text = clean_answer(llm_response.content)
|
| 108 |
+
|
| 109 |
+
# Format the response properly
|
| 110 |
+
task_id = str(state.get("task_id", "1"))
|
| 111 |
+
formatted_response = [{"task_id": task_id, "submitted_answer": clean_text}]
|
| 112 |
+
|
| 113 |
+
return {"messages": [AIMessage(content=json.dumps(formatted_response, ensure_ascii=False))]}
|
| 114 |
|
| 115 |
# --- Graph Definition ---
|
| 116 |
builder = StateGraph(MessagesState)
|
|
|
|
| 128 |
def is_valid_agent_output(output):
|
| 129 |
"""
|
| 130 |
Checks if the output matches the required format:
|
| 131 |
+
[{"task_id": ..., "submitted_answer": ...}]
|
| 132 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
try:
|
| 134 |
+
parsed = json.loads(output.strip())
|
| 135 |
+
if not isinstance(parsed, list):
|
| 136 |
+
return False
|
| 137 |
+
|
| 138 |
+
for item in parsed:
|
| 139 |
+
if not isinstance(item, dict):
|
| 140 |
return False
|
| 141 |
+
if "task_id" not in item or "submitted_answer" not in item:
|
| 142 |
return False
|
| 143 |
return True
|
| 144 |
+
except:
|
| 145 |
return False
|
| 146 |
|
| 147 |
|
| 148 |
def extract_flat_answer(output):
|
| 149 |
+
"""Extract properly formatted answer from output"""
|
| 150 |
+
try:
|
| 151 |
+
# Try to parse as JSON first
|
| 152 |
+
parsed = json.loads(output.strip())
|
| 153 |
+
if isinstance(parsed, list) and len(parsed) > 0:
|
| 154 |
+
first_item = parsed[0]
|
| 155 |
+
if isinstance(first_item, dict) and "task_id" in first_item and "submitted_answer" in first_item:
|
| 156 |
+
return output # Already properly formatted
|
| 157 |
+
except:
|
| 158 |
+
pass
|
| 159 |
+
|
| 160 |
+
# If not properly formatted, return as-is (fallback)
|
| 161 |
+
return output
|
| 162 |
+
|
| 163 |
|
| 164 |
# test
|
| 165 |
if __name__ == "__main__":
|
| 166 |
+
question = "What is 2 + 2?"
|
| 167 |
# Build the graph
|
| 168 |
graph = build_graph()
|
| 169 |
# Run the graph
|
|
|
|
| 180 |
print("-----------------------")
|
| 181 |
else:
|
| 182 |
output = message.content # This is a string
|
| 183 |
+
print(f"Raw output: {output}")
|
| 184 |
try:
|
| 185 |
parsed = json.loads(output)
|
| 186 |
if isinstance(parsed, list) and "task_id" in parsed[0] and "submitted_answer" in parsed[0]:
|
| 187 |
print("β
Output is in the correct format!")
|
| 188 |
+
print(f"Task ID: {parsed[0]['task_id']}")
|
| 189 |
+
print(f"Answer: {parsed[0]['submitted_answer']}")
|
| 190 |
else:
|
| 191 |
print("β Output is NOT in the correct format!")
|
| 192 |
except Exception as e:
|
| 193 |
+
print("β Output is NOT in the correct format!", e)
|
| 194 |
+
|